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Abstract

The ever-growing volume of data across diverse domains presents significant chal-
lenges for efficient exploration and analysis. A fundamental task within data explo-
ration is the search for relevant objects in large datasets, which is crucial for subse-
quent downstream tasks. Traditional data exploration methods often rely on near-
est neighbor search, a technique where users provide a relevant example to find the
most similar instances in the entire dataset. However, these techniques often fall
short in scenarios demanding high accuracy and completeness of the results.

Machine learning offers a promising alternative, enabling users to define a query
by providing both relevant and non-relevant example objects to train a model that
identifies all relevant objects in the entire data catalog. However, this approach
has a critical drawback: to find all relevant instances, such a model needs to be
applied to the entire dataset. This necessitates scanning every data point, making it
prohibitively expensive for large-scale, interactive use cases serving many users and
queries simultaneously.

This cumulative dissertation proposes a novel search framework that leverages the
power of machine learning models to enable rapid and accurate searches on mas-
sive datasets. Unlike previous approaches that require full data scans, our frame-
work achieves efficient search through an innovative co-design strategy that inte-
grates machine learning models with efficient index structures, allowing for fast re-
trieval of relevant data points. Through several joint works, the underlying theo-
retical framework is presented and extended. Moreover, its practical applicability is
demonstrated in various real-world scenarios.
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Chapter 1

Introduction

In recent years, there has been a significant increase in the amount of data collected
in a multitude of fields. From high-resolution satellite imagery [30] to the massive
databases of genome sequences [86] and the ever-expanding universe of web-based
media [112], data is being produced at an exponential rate across all scientific dis-
ciplines. In the field of remote sensing, for instance, upcoming Earth observation
missions such as Landsat Next [116] are projected to generate petabytes of data on
a daily basis.

While the capacity to collect data has grown exponentially [90], the ability to navi-
gate these vast repositories and extract meaningful insights has not kept pace. Tra-
ditional retrieval methods, such as structured queries in relational databases or near-
est neighbor searches, often encounter difficulties when confronted with the sheer
volume and complexity of large-scale datasets. These approaches either yield unsat-
isfactory results or necessitate complex queries that are difficult to formulate [81].
Consequently, these limitations hinder the ability to unlock the true potential of the
data and translate it into actionable knowledge.

Machine learning presents a promising solution to this challenge. The field of ma-
chine learning has witnessed remarkable advancements, particularly with the rise of
deep learning. However, the focus has often been on developing increasingly deep
models to solve highly complex problems, including decoding protein structures [62]
and constructing large language models [107]. While these advancements are signif-
icant, a crucial gap remains: developing efficient machine learning methods specifi-
cally designed to be applied to large-scale datasets.

1.1 Motivation

This thesis aims to bridge this gap by developing machine learning models that are
not only accurate in their predictive capabilities but also efficient when applied to
large datasets. This is crucial for addressing the inherent challenges presented by
the growing volumes of data. While this endeavor could extend to numerous tasks
and applications, this thesis specifically focuses on improving the efficiency of data
retrieval. In these scenarios, users want to retrieve all relevant data to their query
from such massive data catalogs without long waiting times. A common request
is the search for “interesting” objects, as illustrated in Figure 1.1. For instance, an
environmental researcher may want to identify all wind turbines in a large catalog
of high-resolution satellite imagery in order to calculate the potential electricity
production from wind energy. Meanwhile, another user might be interested in the
areas of deforestation using the same dataset. These differing queries highlight the

1
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Search

Query

Figure 1.1: Example of a typical search problem for large data catalogs. A user wants to
find all instances given a particular example. In this scenario, the search deals with large
catalogs of aerial imagery to find all wind turbines in the region. The yellow rectangles on
the map visualize all found instances of wind turbines on the map.

challenges these search engines face, which must not only accommodate such diverse
needs but also handle them efficiently.

In the domain of database and information retrieval, a common strategy known
as query-by-example [40] has been widely adopted to address the aforementioned
challenges. This method involves providing the search engine with examples of the
objects of interest, thereby instructing the search engine as to what it should look
out for. In our example, the user would provide the search engine with an image of a
wind turbine to tell how the desired objects should look. This led to a wide research
branch that found particular attention in the context of media data, such as images,
video, audio, and text, collectively referred to as content-based retrieval [132].1

Traditional search engines primarily rely on nearest neighbor algorithms for efficient
retrieval [129]. These techniques typically utilize efficient data structures known as
index structures that heavily speed up the query execution. Nevertheless, in certain
scenarios, these techniques may yield sub-optimal results, including a high number
of false positives or incomplete answer sets. In settings where the results’ accuracy
is critical, such as in our previous examples, more advanced techniques are required
to identify the desired instances correctly and completely.

Machine learning approaches, such as classification, offer a compelling alternative to
traditional search engines. By providing both relevant and irrelevant examples, users
can train a classification model to identify all desired instances within the entire
dataset accurately. A significant drawback, however, is that applying the model
to the dataset necessitates scanning each data point, which becomes prohibitively
expensive for large-scale datasets.

1Well-known implementations of this method include Google Reverse Image Search and the
underlying search engines used by platforms like Flickr and Pinterest.
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This thesis proposes a novel method that utilizes machine learning to achieve sat-
isfactory query results despite the existing limitations. This method employs a co-
design approach, integrating machine learning techniques with efficient index struc-
tures to ensure high-quality results and rapid response times. Furthermore, the prac-
tical relevance of this framework is demonstrated in the context of two real-world
scenarios.

1.2 Thesis Outline
This cumulative dissertation summarizes the findings of multiple publications [73,
74, 81, 82, 83] that have contributed to achieving the overarching research objectives.
The remainder of this thesis is divided into two parts.

Part I: Foundations

In this part, we will introduce the underlying concepts that our contributions build
upon. Our research unifies ideas from two main areas, which are presented in Chap-
ters 2 and 3.

In Chapter 2, we delve into the realm of machine learning, focusing specifically on
supervised learning. We will describe the relevant models such as decision trees
or artificial neural networks, which are important for our work. In Chapter 3, we
explore the field of information retrieval, with a focus on content-based retrieval as
a sub-domain. We will provide an overview of existing approaches for content-based
retrieval that utilize various methods of nearest neighbor search, giving context to
the current state of the field.

Part II: Contributions

This part presents our contributions, which are in line with our research objectives.
It is divided into three chapters.

In Chapter 4, we present our novel search framework, which leverages machine learn-
ing models to address content-based retrieval more efficiently and accurately than
traditional methods. This chapter introduces not only a new search framework but
also novel machine learning models specifically developed for content-based retrieval.
In Chapter 5, we build on the newly established search framework and demonstrate
its effectiveness in real-world applications. Furthermore, we also address some draw-
backs of the original framework. In the final chapter of the thesis, Chapter 6, we
present a summary of our findings and provide an outlook for future research. We
critically evaluate the outcomes of our contributions concerning our research objec-
tives and offer guidance for researchers who wish to continue exploring this area of
study.
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Chapter 2

Machine Learning Background

First, we look at the foundations of machine learning that serve as the basis for the
algorithms discussed in the remainder of this thesis. Due to the complex nature of
machine learning, we have limited our scope to selected topics related to our contri-
butions. More precisely, we focus on the task of supervised learning, in particular
classification, and introduce tree- and neural-network-based machine learning mod-
els in more detail.

2.1 Supervised Learning

Imagine estimating the value of a new home based on its features, filtering spam
from the email inbox, or even predicting disease outbreaks given personal health
data. These are just a few of the examples of supervised learning. In supervised
learning, a model is trained to learn a mapping between inputs and desired outputs,
as shown in Figure 2.1 [53]. The model is provided with labeled examples, wherein
each input (x) has a corresponding known outcome (y), such as the price of a house or
the label “spam” for an email. By analyzing these examples, the model can identify
patterns that allow it to predict the outcome for entirely new, unseen inputs.

More formally, supervised learning involves a training set T of N pairs of input-
output pairs, T = {(x1, y1), . . . , (xN , yN)} where xi ∈ RD corresponds to a D-
dimensional feature vector and each corresponding output yi is a label within a
defined label space Y for i ∈ {1, . . . , N} [34]. The goal of supervised learning is
to learn a function f ∗ : RD → Y that accurately predicts the output for any new
input x ∈ RD. The task is to estimate (“learn”) the function f ∗ given the training
set T of inputs. The estimated function f , referred to as the model, is used to infer
a label ŷ = f(x) for a new, unseen data point x as well as possible. The ideal
outcome is that the model’s prediction matches the true output, that is, f(x) = y.
Supervised learning is typically categorized based on the type of output variable.
For continuous outputs, where Y = R, this is referred to as regression. Conversely,
for categorical outputs, where Y = {0, . . . , C − 1} and C ∈ N+ is the total number
of classes, it is named classification. A specific type of classification is referred to
as binary classification, where Y = {0, 1}, while cases with C > 2 are called multi-
class classification. This thesis specifically focuses on classification problems.

Performance Metrics in Classification

In the domain of supervised learning, the evaluation of model performance is crucial
for understanding how well the model can generalize to unseen data, that is, how
well it estimates the function f ∗. To assess the generalization capabilities of the

7
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Figure 2.1: Visualization of supervised learning tasks. In regression, a model is learned
to predict continuous values, while in classification, it identifies discrete categories.

trained model on unseen data, the model predictions ŷ are typically compared to
the ground-truth labels y using a designated test set [45]. The test set, denoted as
Ttest = {(x1, y1), . . . , (xM , yM)}, comprises M instances that were not part of the
training data. Different performance metrics offer insights into various aspects of
the model’s capabilities. For classification tasks, metrics such as accuracy, precision,
recall, and F-score play an important role. The most intuitive metric is the accuracy
of a model, defined as:

Accuracy =
1

M

M∑
i=1

1(ŷi, yi). (2.1)

Here, ŷi represents the predicted label for the i-th instance of Ttest, yi is the true
label, and 1(ŷi, yi) is an indicator function that is 1 if the prediction is correct
and 0 otherwise. Accuracy is the fraction of predictions the model got right and
is often sufficient to indicate the overall model performance. Other metrics are
used when the classification task has some additional constraints. Their underlying
concepts are best explained in a binary classification setting, although they also
apply to multi-class scenarios. In binary classification scenarios, we distinguish
between positive (y = 1) and negative labels (y = 0). A model prediction ŷi for
element i can be grouped into four categories when compared to the ground truth
yi, as represented by a confusion matrix shown in Table 2.1.

Given the notation in Table 2.1, we can define various classification metrics:

• Accuracy can also be denoted as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.2)

• Precision is a measure of the ratio of correctly predicted positive observations
to the total predicted positives. It is particularly useful in scenarios where the
cost of false positives is high:

Precision =
TP

TP + FP
. (2.3)
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y = 1 y = 0

ŷ = 1 True Positive (TP) False Positive (FP)

ŷ = 0 False Negative (FN) True Negative (TN)

Table 2.1: Confusion matrix in a binary classification scenario.

• Recall is a measure of the ratio of correctly predicted positive observations
to all the observations in the actual class. It is a crucial metric in scenarios
where the cost of false negatives is high:

Recall =
TP

TP + FN
. (2.4)

• F1-score is the harmonic mean of precision and recall, considering both false
positives and false negatives. It is a useful metric in cases where an equal
balance between precision and recall is desired:

F1-score = 2× Precision× Recall
Precision + Recall

. (2.5)

In scenarios where the distribution of the dataset is dominated by one class, addi-
tional metrics can be particularly useful in providing a more comprehensive under-
standing of model performance. For instance, a model that assigns all instances to
the dominating class would yield a very good accuracy, but would not be capable of
identifying any other classes. In such scenarios, considering additional metrics like
recall and precision and balancing them in F1-score can provide a more nuanced in-
dication of the generalizability of the model.

2.1.1 Decision Trees

Decision trees, particularly classification and regression trees (CARTs) [21], are a
simple but powerful machine learning model. Their simplicity and interpretability
make them a popular choice for tasks such as classification. They recursively parti-
tion the dataset into a set of rectangles. This set is defined by a tree structure, as
shown in Figure 2.2. In the context of classification, where the dataset is defined
by T = {(x1, y1), . . . , (xN , yN)} ⊂ RD × {0, . . . , C − 1}, the goal of the partition-
ing is to end up with subsets of the data T that are homogeneous concerning the
label y. A decision tree is constructed in a top-down manner, as described in Al-
gorithm 1, that is, from the root node to the leaves, where at each internal node
(all nodes except the leaves) a binary split is made that divides the set S ⊆ T into
two subsets. These splits are made along a feature axis. To find the optimal split,
all possible splits defined by a splitting dimension ϕ ∈ {i1, . . . , iµ} and a splitting
threshold θ ∈ R are evaluated, where the hyperparameter µ ∈ {1, . . . , D} defines
the number of splitting dimensions that are considered per split. In most cases, for
single decision trees, µ = D guarantees that the best current split is identified in a
greedy manner. This implies that the construction algorithm is always looking for
the current best option, yet at subsequent split points, it may be the case that the
preceding splits did not result in the optimal global solution.
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Figure 2.2: Decision tree with the corresponding decision surface. The yellow areas in
the decision surface correspond to the leaves that contain points of the class y = 1, while
the white areas belong to the class y = 0. Figure adapted from our work [81].

From an optimization perspective, to find the best split (ϕ∗, θ∗), one typically aims
at maximizing the so-called information gain G(SL, SR). This metric quantifies how
well the classes are separated by a split (ϕ, θ) of set S into subsets SL = {(x, y) ∈
S | x(ϕ) ≤ θ} (i.e., left leaf) and SR = S \ SL (i.e., right leaf). More precisely, the
information gain is defined as:

G(SL, SR) = Q(S)− |SL|
|S|

Q(SL)−
|SR|
|S|

Q(SR), (2.6)

where Q(S) denotes an impurity function. Then, to find the best split (ϕ∗, θ∗) for
S, we solve the following optimization problem:

(ϕ∗, θ∗) = argmax
ϕ,θ

G(S
(ϕ,θ)
L , S

(ϕ,θ)
R ), (2.7)

where ϕ ∈ {ϕ1, . . . , ϕµ} ⊆ {1, . . . , D} and the subsets are defined as S
(ϕ,θ)
L =

{(x, y) ∈ S | x(ϕ) ≤ θ} and S
(ϕ,θ)
R = S \ S(ϕ,θ)

L .

The definition of G(SL, SR) relies on the impurity function Q(S), which measures the
degree of class mixing within a subset. In literature, numerous impurity functions
have been proposed. For classification scenarios, a common choice is the Gini index,
which is given by:

Qgini(S) =
C−1∑
c=0

pc(1− pc). (2.8)

Here, pc ∈ [0, 1] is the fraction of points in S belonging to class c ∈ {0, . . . , C − 1}.
The Gini index is minimal with Qgini(S) = 0, which occurs when all instances
belong to a single class. This is commonly referred to as pure. Conversely, the Gini
index reaches its maximum value, Qgini(S) = (C − 1)/C, when the C classes are
distributed evenly across the dataset.
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Algorithm 1 Constructing a decision tree
Require: Point set S ⊆ RD×{0, . . . , C− 1}, stopping criterion λ, hyperparameter

µ ∈ {1, . . . , D} ▷ Common choices for λ are to stop after a certain depth
of the tree or until the set is pure.

Ensure: Decision tree T build for S
1: function BuildDecisionTree(S, λ, µ)
2: if λ is met then
3: return leaf node storing majority class as a label
4: Find optimal split (ϕ∗, θ∗) for S ▷ See Equation 2.7
5: SL = {(x, y) ∈ S | x(ϕ∗) ≤ θ∗}
6: SR = S \ SL

7: TL ← BuildDecisionTree(SL, λ, µ)
8: TR ← BuildDecisionTree(SR, λ, µ)
9: Add node storing (ϕ∗, θ∗) and pointers to TL and TR to the tree T

10: return T

Next to the Gini index, there exist two other common impurity functions for classi-
fication scenarios [53]: entropy and misclassification error (MCE) denoted as:

Qentropy(S) = −
C−1∑
c=0

pc log2(pc), and (2.9)

QMCE(S) = 1−max(pc), (2.10)

respectively. The tree construction stops after each leaf node ends up with only
pure subsets of the data or when a stopping criterion λ is met (e.g. all leaves are
pure or the maximum depth of the tree is reached). In the majority of cases, fully
grown trees are not recommended as they also learn the included noise of the training
data, a phenomenon known as overfitting [53] the data. This results in a lack of
generalization on new, unseen data. Hence, it is generally recommended to employ
early stopping or pruning of the tree in a post-processing routine.

To predict the class for a new data point x ∈ RD using a decision tree T (x), the
majority class in the leaf to which the new point is assigned determines the predicted
class. This assignment is based on the feature values of x, which navigate the path
from the root to the appropriate leaf of the tree.

One significant challenge with decision trees is their tendency to exhibit high vari-
ance. Minor variations in the data can lead to drastically different split decisions,
making interpretation somewhat complicated. This instability primarily stems from
the tree’s hierarchical structure, where an error in the top split cascades down to
all subsequent nodes. To mitigate this problem, the concept of bootstrap aggregat-
ing (bagging) [20] is often employed. Bagging is a method that combines multiple
trees to reduce variance. This is also the underlying concept for random forests ex-
plained next.

2.1.2 Random Forests

Despite their simplicity, random forests remain among the most effective machine
learning models [41]. In essence, random forests construct an ensemble of L inde-
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Algorithm 2 Constructing a random forest
Require: Point set S ⊆ RD × {0, . . . , C − 1}, number of tree models L, stopping

criterion λ, hyperparameter µ ∈ {1, . . . , D}
Ensure: Random forest E build for S
1: Empty set E ← {} for storing individual trees
2: for i = 1 to L do
3: Draw a bootstrap sample Zi of size |S|
4: Ti ← BuildDecisionTree(Zi, λ, µ)
5: E ← E ∪ {Ti}
6: return E

pendent decision tree models T1, . . . , TL on randomly sampled subsets of the training
data T [20]. The sampling technique is called bootstrapping, which uniformly draws
N instances from the training data with replacement. Each tree is then trained on
one of the individual bootstrap samples Z1, . . . , ZL ⊂ T , as shown in Algorithm 2.
Notably, at each split during the tree construction, a new random subset with µ fea-
tures is considered to find the best split.

For classification, random forests employ a majority vote (also known as “wisdom
of the crowd”) to predict the class for a new, unseen x with:

E(x) = argmax
c∈{0,...,C−1}

L∑
i=1

1(Ti(x), c), (2.11)

where the indicator function 1(T (x), c) outputs 1 if T (x) = c and 0 otherwise.
The aggregation of the outcomes of multiple individual trees trained on bootstrap
samples is referred to as bagging, which was initially proposed by Breiman [20]. The
strength of bagging lies in its ability to reduce variance and mitigate overfitting by
inducing randomness. The introduction of randomness, both in the data sampling
and in the split feature selection, introduces diversity into the trees, preventing them
from becoming overly dependent on specific features or patterns in the data. This
diversity promotes generalizability to unseen data, leading to robust final predictions
of the ensemble. This principle will be of great importance for the development of
our tree-based models in Chapter 4.

Another tree-based ensemble model called extremely randomized trees or simply ex-
tra trees [46] takes the induced randomness to an even higher level by introducing
randomness also to the split point selection.1 For each randomly selected feature,
it picks a random split point instead of the best. While bagging averages diverse,
independent trees, another ensemble technique called boosting builds trees sequen-
tially, with each tree trying to correct the errors of the previous one. One of the
most popular boosting algorithms is XGBoost [26].

2.1.3 Artificial Neural Networks

Artificial neural networks belong to a class of machine learning models inspired by
the neural structures of the human brain [48]. At their core, they consist of fun-

1However, each tree is trained on the entire training set T rather than on bootstrap samples,
only.
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Figure 2.3: Figure (a) shows a representation of a signal neuron as a linear function that
forwards its output through a non-linear activation function. Figure (b) depicts the ReLU
activation function.

damental units known as neurons, each representing a basic linear function y =
w⊤x+ b, where w ∈ RD and b ∈ R denote the learnable weights and biases, respec-
tively, and x ∈ RD is the input. A schematic representation of a single neuron, also
called perceptron, is shown in Figure 2.3a. To allow artificial neural networks to
model nonlinear relationships, the output of each neuron is passed through a non-
linear activation function g : R→ R. A common choice is the function rectified lin-
ear unit (ReLU), denoted by gReLU (x) = max(0, x) and shown in Figure 2.3b. Con-
ceptually, the ReLU function can be understood as a threshold that only forwards
the signal of the neuron once the signal strength exceeds the value zero.

Feedforward Neural Networks

The true potential of artificial neural networks is revealed when multiple neurons
are combined into neural networks. This thesis will focus on feedforward neural
networks (FNNs) [48], a subset of artificial neural networks where the signal flow is
unidirectional, moving from input x ∈ RD to output y. The architecture of FNNs
is organized into layers: input, one or more hidden, and output layers. As shown
in Figure 2.4, the input layer receives the input data, the hidden layers perform
computations and transformations through weighted connections of the neurons,
and the output layer produces the final prediction. Each layer’s output can be
considered as the input for the next layer, leading to a concatenation of functions
that produces the final output f(x) = f (L)(. . . f (2)(f (1)(x)), where f (i) represents
the function computed by the i-th layer and L is the number of hidden layers, which
is also called the depth of the network. When considering neural networks with
multiple neural networks (which are commonly used with hundreds of layers), we
refer to them as deep neural networks (DNNs) or deep learning. The configuration
of the individual hidden layers varies according to the specific model architecture,
which is dependent on the number of neurons, the number of connections, the type
of neurons, and other factors.

The output layer is modified in accordance with the specific learning task at hand,
ensuring that the model output aligns with the task objective. In the context of
classification, we distinguish between binary classification and multi-class classifica-
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Figure 2.4: Architecture of a feedforward neural network. It consists of one input layer
with Din-dimensional input and one output layer of the size Dout. In between are L hidden
layers with varying input and output connections.

tion. For binary classification, it is sufficient to have a single output neuron followed
by a sigmoid activation function, which is given by:

gσ(x) =
1

1 + e−x
=

1

1 + exp(−x)
. (2.12)

The activation function outputs values between 0 and 1 that can be interpreted
as probabilities of predicting class 1. In the case of multi-class classification, one
output neuron is associated with each class C. The softmax activation function
gsoftmax : RC → (0, 1)C is employed that takes all the neurons’ output, also called
logits, as input x ∈ RC . It maps the logits to probabilities that sum up to 1, formally
defined as:

gsoftmax(x)j =
exj∑C
c=1 e

xc

, j ∈ {1, . . . , C}. (2.13)

Model Training

Training FNNs involves a two-step iterative process: a forward pass and a backward
pass [67]. During the forward pass, the network calculates the predicted output ŷ
for a given input x, using the current weights and biases. The model’s performance
is assessed by computing the loss between the predicted output (ŷ) and the actual
target output (y). To accurately assess the performance in classification tasks, a loss
function defined as L : {0, 1}C×(0, 1)C → R is employed to quantify the discrepancy
between the predicted outputs and the actual target outputs. This necessitates that
the vector of true class labels, y, be represented in a one-hot encoded format, where
a class label y is transformed into a binary vector y ∈ {0, 1}C . In particular, if a
specific instance belongs to class c, then the c-th element of the vector y is 1 and
all other elements are 0. A common choice for this purpose in classification tasks is
the cross-entropy (CE) loss, which is defined for a single sample as follows:

LCE(y, ŷ) = −
C∑
c=1

yc log(ŷc), (2.14)
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where y contains the true class labels and ŷ the predicted class probabilities.

For binary classification tasks, the function L is specifically defined for binary out-
puts and takes the form L : {0, 1}× (0, 1)→ R. For CE, we refer to the binary loss
variant called binary cross-entropy (BCE), which is defined as:

LBCE(y, ŷ) = −(y log ŷ + (1− y) log(1− ŷ)), (2.15)

where y is the true binary label and ŷ is the predicted probability of the class with
label 1.

In the backward pass, the network weights are modified to reduce the calculated loss.
To properly adjust the weights, one generally makes use of gradient-based learning
methods. For this purpose, the overall gradient ∇L(w) of the loss function w.r.t.
the weights2 is computed. This gradient elucidates how changes in weights influence
the overall error. The exact computation of the gradients of each weight is non-
trivial as this requires resolving the network’s chained nature. For this reason, an
effective algorithm, named backpropagation [101], has been developed to iteratively
traverse the network from the final layer to the initial layer, computing the gradient
of each layer using the multi-dimensional chain rule.

The gradient descent method is employed to perform weight updates, whereby
weights are adjusted in the direction opposite to the gradient in order to minimize
the loss. Formally, if wt represents the weights at iteration t, the update rule is:

wt+1 = wt − η · ∇L(wt), (2.16)

where η denotes the learning rate, a crucial hyperparameter that influences the
magnitude of weight updates. To be more precise, this is done by computing the
gradient based on the entire training set T . Since the computation of the partial
derivatives can become quite expensive, especially for large datasets, in practice
the weight updates are performed on random subsets of the training set S ⊂ T ,
commonly referred to as batches. The size of a batch, denoted by |S|, is an important
hyperparameter for the model training. The process of updating weights using
batches of data and computing gradients iteratively over multiple epochs (complete
passes through the dataset) continues until the loss converges to a local minimum
or another stopping criterion is met. The learning rate must be carefully chosen; a
too high rate may cause overshooting of minima, while a too small rate can slow
down convergence significantly.

Convolutional Neural Networks

Convolutional neural networks (CNNs) [67] represent a specialized variant of FNNs
that are particularly adept at processing data with a grid-like topology, such as im-
ages. CNNs differentiate themselves from traditional FNNs by incorporating convo-
lutional layers as layers that perform convolutional operations. These employ learn-
able filters that slide across the input data, capturing spatial patterns, as shown in
Figure 2.5. The essence of the convolution operation involves sliding a small window
(or kernel) across the input features and computing the weighted sum of the filter

2In this context, the term weights is used to refer to both weights and biases for the sake of
simplicity.
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Figure 2.5: Sliding window convolving a 3x3 kernel over a 4x4 input producing a 2x2
output feature map. Each output value is calculated by the weighted sum of the input
data window and the filter weights of the kernel.

weights and the input data encapsulated by this window [47]. This process assists
the network in capturing local structures, from basic edges and shapes to more in-
tricate combinations in images as the number of layers is increased. The typical ar-
chitecture of CNNs combines convolutional layers with pooling layers. Pooling lay-
ers serve to compress the spatial dimensions of the data representations, primarily
through methods such as maximum pooling or average pooling. This compression
significantly decreases the number of parameters and computational load required
by the network, enhancing its efficiency and reducing overfitting. Compared to fully-
connected FNNs, CNNs have a relatively low number of weights due to the shared
weights in the convolutional layers and the pooling operations. However, they still
have stronger classification performances for grid-like data (e.g. images) due to their
ability to learn spatial features [102].

2.1.4 Transformers

Although CNNs demonstrate strong performance with grid-like data such as images,
a novel neural network architecture known as transformer [118] has shown consider-
able promise. While originally stemming from the domain of natural language pro-
cessing, other works have also shown their power for other data types such as in the
area of computer vision [37]. These networks are designed to handle sequential data
without the need for recurrence or convolution, leveraging a mechanism called self-
attention (SA) to draw global dependencies between input and output.

The transformer model consists of two main components: the encoder and the de-
coder. The encoder maps the input data to a continuous intermediate representa-
tion. Given the intermediate representations, the decoder generates the output. In
the context of natural language processing, the transformer accepts a text sequence
in the form of a sentence, tokenizes it, and outputs the probabilities for the next to-
ken at each position in the sequence. The entire transformer architecture is shown
in Figure 2.6, which illustrates the high-level encoder-decoder structure and the de-
tails of the attention mechanism.

Both, the encoder and decoder comprise a stack of L identical layers (L = 6 in
original paper [118]). In the encoder, each layer consists of two sublayers where the
first is a multi-head self-attention (MSA) block and the second a position-wise FNN.
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Figure 2.6: Transformer architecture going from a high-level representation of the
encoder-decoder architecture into the details of the underlying multi-head self-attention
mechanism. Figure adapted from Vaswani et al. [118].

All sublayers as well as the embedding layers, produce outputs of dimensionality D
(D = 512 in original paper [118]). At the end of each sublayer, add & norm blocks
are employed to stabilize the training. Here, the sublayer’s input is added to the
output of the sublayer, a technique known as residual connections that was originally
proposed in the ResNet [55] model to make the training of very deep FNNs more
stable. On top, the sum of both is normalized along the feature dimension, called
layer normalization (LN) to accelerate the training [9]. The FNN consists of two
fully-connected layers with a ReLu activation in between that is applied across all
input positions with the same linear transformations. The FNN can be denoted
with:

FNN(x) = gReLU (xW
⊤
1 + b1)W2 + b2, (2.17)

where W1,W2 ∈ RDm×D correspond to the weight vectors of the first respectively
second layers and b1,b2 are bias vectors where b1 ∈ RDm and b2 ∈ RD with Dm

being the inner-layer dimensionality (Dm = 2048 in original paper [118]). The
decoder is of the same size as the encoder. In addition to the two sublayers in the
decoder, another MSA layer is added over the outputs of the encoder. Moreover, the
first attention block in the decoder is masked such that the next token prediction at
position i is only influenced by the previous tokens at positions less than i. Finally,
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the output of the decoder is processed by a final linear layer and a softmax layer
gsoftmax that outputs the probabilities for the next token.

Self-Attention

At the core of the transformer model is the self-attention mechanism shown in
Figure 2.6c. This mechanism enables the model to dynamically focus on different
parts of the input sequence as it processes data. The underlying mechanism of
the self-attention technique is the so-called scaled dot-product attention, where at
each unit three weight matrices are learned for the query WQ ∈ RD×DQ , the keys
WK ∈ RD×DK , and the values WV ∈ RD×DV , respectively. For each token i of the
sequence, the input representation xi is multiplied with each of the corresponding
weight matrics to produce the query qi = xiWQ, key ki = xiWK and the value
vector vi = xiWV . Let Q,K,V be the matrices, where the i-th row are vectors
qi,ki,vi respectively, then the scaled dot-product attention is defined as:

Attention(Q,K,V) = gsoftmax

(
QK⊤
√
DK

)
V, (2.18)

where
√
DK is used as a scaling factor. This form of attention mechanism is called

self-attention, as it considers only the distinct positions of a given sequence, in
contrast to previous approaches that considered the entirety of earlier sequences.
In the context of a sentence as an input sequence, the self-attention mechanism
compares each token in the sentence to all other tokens, allowing the model to
understand how the meaning of each token is related to the others and focus on the
most relevant ones for a specific task.

Instead of performing single attention, in each MSA block, attention is computed
with different learned linear projections of the queries, keys, and values in h different
attention heads (h = 8 in original paper [118]), as shown in Figure 2.6b. The DV -
dimensional outputs are then concatenated and linearly projected as follows:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO,

where headi = Attention(QW
(i)
Q ,KW

(i)
K ,VW

(i)
V ).

(2.19)

Here, WO ∈ RhDV×D are the weights of the final linear layer.

The transformer model processes data in parallel rather than in sequence, which
means it lacks an inherent understanding of the order of tokens. To address this,
positional encoding is added to the input embeddings at the base of both the encoder
and decoder. This encoding provides information about the position of each token
in the sequence, ensuring that the model can consider the order of tokens when
processing text.

Vision Transformer

While the original transformer architecture is designed for one-dimensional sequences
of text, the vision transformer (ViT) [37] allows for the processing of image data by
implementing minor modifications to the architecture. In essence, the input image
data must be transformed into a compatible format for the ViT. Let x ∈ RH×W×C
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be an image input where H is the height, W the width and C the number of chan-
nels, e.g. C = 3 for RGB. The image is then split into N = HW

P2 image patches xp ∈
RN×(P×P×C) where P is the height and width of the patches. These image patches
are flattened by alinear projection with a learnable matrix of E ∈ R(P×P×C)×D re-
sulting in D-dimensional embeddings called patch embeddings. Similar to the orig-
inal transformer, positional embeddings are added to the patch embeddings as the
initial input to the encoder denoted as Epos ∈ R(N+1)×D. Additionally, a learnable
class token xclass is incorporated into the model, which serves as the overall image
representation at the end of the encoder. The input of the encoder z0 can be de-
scribed as follows:

z0 = [xclass,x
1
pE,x

2
pE, . . . ,x

N
p E] + Epos. (2.20)

In the encoder, only minor architectural modifications are made. These include
the relocation of the layer normalization to the initial stage of each sublayer and
the replacement of the ReLU activation function in the FNN with a GELU non-
linearity [56]. The output of the encoder zl at layer l with l = 1, . . . , L can be
defined by:

z′l = MSA(LN(zl−1)) + zl−1, (2.21)

zl = FNN(LN(z′l)) + z′l. (2.22)

Unlike the original transformer, the ViT lacks a decoder, as it was originally designed
for classification tasks. To make the final prediction, the final state of the class
token z

(0)
L is layer normalized and run through another FNN that outputs the class

probabilities.

With these modifications, the ViT has the potential to outperform existing state-of-
the-art CNN-based approaches on image classification tasks. However, in its original
version, there are some drawbacks [64]. Unlike CNNs, which inherently capture local
spatial hierarchies due to their convolutional structure, the ViT does not have this
built-in bias towards image data.3 While this may be advantageous in terms of model
flexibility, it also implies that the ViT may not effectively capture local features when
not trained on large datasets. This, coupled with the computationally intensive
nature of self-attention mechanisms, translates to models with higher computational
demands. Despite these drawbacks, ongoing research is addressing many of these
issues, enhancing the efficiency and applicability of the transformer.

2.2 Beyond Supervised Learning
This section will briefly introduce other well-known learning paradigms and delineate
them from supervised learning. This overview is not meant to be complete and only
focuses on categories relevant to the thesis. In general, we classify them based on
their learning objective and degree of supervision [45].

Unsupervised Learning

Unlike supervised learning, models in unsupervised learning identify hidden pat-
terns and relationships within the data without explicit labels for the data [53].

3This is known under the term inductive bias [13].
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Well-known examples are clustering algorithms like k-means [79] that group similar
data points based on specific characteristics. This helps uncover natural categories
within the data. Other methods aim to reduce the number of features in a dataset
while preserving the most important information such as principal component anal-
ysis (PCA) [61]. This simplifies data visualization and analysis as users can visual-
ize the data in human-interpretable two- or three-dimensional space.

Semi-Supervised Learning

Semi-supervised learning involves training models on a small amount of labeled data
supplemented by a large amount of unlabeled data [117]. This approach leverages
the structure or distribution of the unlabeled data to improve learning accuracy.
This can be particularly beneficial in scenarios where the labeling process for new
data is costly.

Self-Supervised Learning

In recent years, self-supervised learning (SSL) [78] has emerged as a new learning
paradigm, driven by the limitations of conventional supervised learning methods.
Supervised learning relies heavily on expensive manual labeling and is prone to
generalization errors and adversarial attacks related to the labels. In contrast to
that, self-supervised learning presents itself as a valid alternative without the need
for pre-labeled data. Essentially, self-supervised learning operates by extracting
labels directly from the input data through the definition of a pretext task. This task
enables the model to infer structure and knowledge from the data itself. According
to Liu et al. [78], self-supervised techniques can be classified based on their type of
pretext task, which can be contrastive, generative, or generative-constrative:

• Generative: These methods train an encoder to convert the input x into a
vector z and a decoder to reconstruct x from z. One example are autoen-
coders [101].

• Contrastive: These methods train an encoder to convert the input x into a
vector representation z, which is then used to measure the similarity between
different inputs. One well-known example is SimCLR [27] for learning image
representations.

• Generative-Contrastive: This approach combines the generation of syn-
thetic samples with the discrimination between real and fake samples. An ex-
ample are generative adversarial networks (GANs) [32].



Chapter 3

Content-Based Retrieval

3.1 Problem Definition

Content-based retrieval (CBR) is a subfield of information retrieval that focuses on
retrieving data based on its intrinsic content, rather than relying on metadata like
tags or keywords [111]. This approach is particularly used in multimedia retrieval
where the retrieval should be based on the actual contents of the media data (e.g.
images, audio, video, text, etc.). For instance, in image retrieval, CBR systems
analyze the visual features of an image such as color, texture, and shape, rather than
relying on manually entered keywords. This enables the retrieval of images that
are visually similar to a query image, offering a more intuitive and efficient search
experience than providing a potentially imprecise keyword as a query item.

Instead of searching the raw data directly, in CBR the data catalog is first trans-
formed into compact vector representations, called embeddings [119]. These embed-
dings capture low-level feature descriptors of the content and offer a more efficient
representation for searching. Given a catalog of embeddings, a CBR search aims to
find the most similar embeddings to the query embedding in the data catalog using
distance measures. These measures can be efficiently computed leveraging pre-built
data structures. Items with embeddings that are closer in the feature space are con-
sidered more relevant than distant ones. It is important to note that the quality of
the embeddings is crucial for the search. The better the embeddings represent the
inherent characteristics of the data, the more precise the results. This is why, over
the past decades, numerous methods have been developed to generate embeddings
that capture different characteristics of the data, such as texture, edges, or color in
images. One well-known method is scale-invariant feature transform (SIFT) [80],
which has been utilized for CBR in the image domain for a long time.

Despite these advancements, a significant challenge in CBR remains the semantic
gap [130], which refers to the difficulty of using low-level feature embeddings to re-
spond to high-level semantic queries. For instance, a user may search for images
containing the Eiffel Tower, but the embeddings might only detail the shapes and
colors present in the images, not the semantic concept of the Eiffel Tower itself. Re-
cent developments in deep learning [119] aim to bridge this gap. By replacing tradi-
tional feature extraction techniques like SIFT with advanced DNNs, these modern
approaches strive to minimize the gap between user queries and the characteristics
captured by the embeddings. This thesis will focus on the recent advancements in
the field of CBR leveraging DNNs for extracting the embeddings, which are sum-
marized under the term deep feature extraction [28].

21
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3.1.1 Query Formulation

The variety of CBR approaches allows for the support of different types of queries.
This is determined by the type of searches that should be enabled by the search en-
gine [134]. The architecture of a retrieval system is fundamentally designed around
these query functionalities. CBR distinguishes between two query types, differen-
tiated by their capacity to capture the semantics of user intentions according to
Faloutsos et al. [40]:

• Query-by-Example (QBE): The most straightforward method and the most
commonly used in CBR is query-by-example, which takes an example instance
as a query and searches for the most similar items in the data catalog. The
simplicity of this approach lies in the fact that the creation of the embeddings
of the query is the same as the creation of the embeddings of the instances
in the database, which therefore only requires one feature extraction method.
Typically, a single example is provided in the query. However, there are also
approaches [115, 122] that accept multiple instances as a query, with the in-
tention of more precisely defining the user’s intent. These approaches primar-
ily rely on fusing the embeddings of the individual examples into a joint em-
bedding that is then used for the search.

• Query-by-Content (QBC): In cases where the creation or provisioning of
an example for the user is non-trivial, alternative approaches exist that fa-
cilitate the construction of a query for the user. These approaches do not
rely on a concrete example but rather on an abstract concept that describes
the object of interest. One straightforward strategy is the use of textual de-
scriptions to define the content of interest. In the case of images, this can be
achieved through the use of sketches of images, which are known as query-by-
sketch [22, 125]. While this approach simplifies the creation of a query for the
user, it introduces new challenges for the search engine, which must transform
the query into the same embedding format as the database instances.

3.1.2 Framework

Once the query type has been defined, the CBR system can be set up. Essentially, a
CBR system must provide two primary functionalities [19]. Firstly, it must include a
robust feature extraction component that is capable of deriving compact embeddings
from the input data. Secondly, the system needs a search component responsible
for conducting efficient searches given a query and a data catalog. This process
typically involves the utilization of pre-built index structures to facilitate efficient
data retrieval. According to Zhou et al. [134], the workflow of a CBR system can be
grouped into two distinct phases: the offline and the online stage. A more detailed
representation of the CBR workflow is presented in Figure 3.1, which is further
explained below.

Offline Stage

The offline stage represents the preprocessing phase before the user can start query-
ing the system [19]. Initially, the data catalog on which the searches are to be per-
formed is collected. Then, the data is processed during the feature extraction phase
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Figure 3.1: Workflow of a CBR system. The gray, dashed arrows indicate optional steps.
Section 3.2 will delve into methods for extracting the embeddings through the use of deep
neural networks. Section 3.3 will cover the efficient search using index structures.

to transform the data into vector representations. In CBR systems, which predomi-
nantly handle complex multimedia data such as images, this process involves trans-
forming raw data into compact embeddings. During the feature extraction phase,
the relevant semantics of the data are extracted into compact representations typ-
ically using DNNs. Further post-processing steps within the embedding phase can
be the fusion of multiple representations into a single, more informative embedding.
Alternatively, to further reduce the storage requirements of the retrieval system, the
extracted embeddings can be compressed through dimensionality reduction, quan-
tization, or aggregation techniques. In the next step, the index structures are con-
structed that represent efficient data structures for rapidly searching and retrieving
relevant instances from extensive data catalogs.

Online Stage

After the index structures have been built, users can start their searches by formu-
lating queries [134]. Depending on the underlying CBR system, it can accept dif-
ferent types of queries such as QBE or QBC. Each query is converted into an em-
bedding that matches the format used during the feature extraction phase for the
data catalog instances. This query embedding is then utilized to find matches by
comparing its similarity with the embeddings of the catalog instances. The system
efficiently retrieves the most relevant matches, leveraging the pre-built index struc-
tures to rank and order them based on their similarity scores. In addition, the ini-
tial query results may be refined in order to better align with the user’s intentions.
Finally, the results are returned to the user.

The following sections will provide a more detailed examination of the two primary
components:
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(1) Feature extraction: The extraction of feature embeddings from raw data
is discussed in Section 3.2. This section will particularly focus on feature
extraction techniques that leverage DNNs, which are known as deep feature
extraction.

(2) Efficient search: The search of similar instances within the data catalog
for a query is described in Section 3.3. The focus of this study is on the
development of efficient retrieval methods that can be applied in large-scale
settings, leveraging index structures.

3.2 From Raw Data to Embeddings

Deep feature extraction is a powerful machine learning technique that uses DNNs
to transform complex data like images and videos, into compact vector representa-
tions called embeddings [38]. These embeddings are crucial for a wide range of ap-
plications, including CBR, classification, segmentation, and more, and serve as in-
termediate representations for further downstream tasks [55, 65, 91]. Before explor-
ing the various deep feature extraction methods, we will introduce the concept and
utility of embeddings.

3.2.1 Embeddings

Embeddings are learned by a function f : X → RD. This function translates an
input (media) element x ∈ X into a point in a D-dimensional real vector space.
The primary goal of the function f(x) is to encapsulate the semantic meaning (e.g.
the visual content of an image) of x in a D-dimensional vector [19]. This vector
representation is significantly smaller in dimensionality than the original input x,
but should retain the essential attributes necessary for relevant tasks.

The function f(x) is typically embodied by a DNN, often called a backbone, that
has been pre-trained on specific learning tasks, thereby generating embeddings that
spatially encode the semantics of the input data. How these DNNs are pre-trained
is discussed in Section 3.2.2. Effective pre-training results in embeddings where vec-
tors of similar objects (e.g. images of monkeys) are located closer together in the vec-
tor space, while vectors of dissimilar objects are further apart. This spatial arrange-
ment ensures that the relationships and similarities between the original objects are
preserved and represented in the geometry of the vector space. Consequently, the
concept of distance in this vector space becomes a practical tool for implementing
similarity searches among media items.

Similarity Measures

The similarity between two embeddings a = f(x1) and b = f(x2) can be measured
using various distance measures D or similarity measures S, both represented by
a function D,S : RD × RD → R. Typically, a higher value of D(a,b) indicates a
lower similarity, while a higher S(a,b) corresponds to a higher similarity and vice
versa.
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• Euclidean distance measures the straight-line distance between two points in
the embedding space. It ranges from 0 to∞, where a distance of 0 corresponds
to the highest similarity. It is defined as:

Deuclidean(a,b) =

√√√√ D∑
i=1

(ai − bi)2. (3.1)

• Cosine similarity measures the cosine of the angle between two real-valued
vectors a and b with values from -1 to 1. A value of 1 indicates the highest
similarity. It is defined as:

Scosine(a,b) =
a · b
∥a∥ ∥b∥

, (3.2)

where a · b is the dot product between a and b and ∥a∥ is the L2-norm of a.

Curse of Dimensionality

When dealing with embeddings in high-dimensional spaces, we encounter specific
challenges that are summarized under the term curse of dimensionality [19]. In
general, this term encompasses several phenomena that arise in the context of high-
dimensional data. A key issue is the exponential growth of the volume of the vec-
tor space with increasing dimension, leading to data sparsity. In such environments,
the relative distance between data points tends to homogenize; that is, differences in
distance between points become less pronounced. This complicates the task of effi-
ciently identifying similar points, as the distinction between the closest and farthest
points diminishes. As a result, these conditions can significantly slow down query
processing, requiring specialized techniques to effectively manage the complexity of
high-dimensional data.

3.2.2 Deep Feature Extraction Methods

Extensive research has been conducted on deep feature extraction in the context
of CBR [28], with a multitude of approaches developed to extract meaningful em-
beddings from input data. Commonly, DNNs are utilized that are pre-trained on
large datasets, enabling them to capture the essential characteristics of the data and
generate informative embedding vectors. Due to the vast number of existing ap-
proaches, we will provide a concise overview of those in the image domain, as this is
the most extensively researched area for CBR. Although the presented models orig-
inate from the field of computer vision, the general concepts of feature extraction
and learning paradigms are transferable to other media types. It should be noted
that the presented approaches are by no means meant to be complete and should
only give an overview of the development of deep feature extraction and some well-
known foundation models.

In Figure 3.2 the workflow of deep feature extraction is demonstrated [132], illustrat-
ing how DNNs generate embedding vectors from input data. To improve the quality
of the extracted embeddings, the DNNs are typically pre-trained on related, large
datasets. Alternatively, fine-tuning with task-specific data can further improve per-
formance. Once extracted, embeddings can also undergo post-processing routines
before being utilized in subsequent retrieval stages.
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Figure 3.2: Workflow of deep feature extraction. The input data is transformed into em-
bedding vectors utilizing deep neural networks. The gray, dashed arrows indicate optional
procedures that may be employed during the feature extraction process.

Generalizable Embeddings

The objective of deep feature extraction is to generate embeddings that not only
encapsulate essential information for specific tasks, but also exhibit high generaliz-
ability across diverse applications and data content [106]. This is particularly im-
portant for the task of CBR, where embeddings are often designed to serve a vast
and heterogeneous data catalog. Therefore, ideally, users are interested in highly
generalizable embeddings that capture the inherent characteristics of the data, en-
suring that the embedding can be applied to a wide variety of use cases.

To achieve this, several strategies are employed [113]. One key approach is increasing
the training dataset by introducing a broader array of data, enabling the model to
encounter and adapt to a wider spectrum of variations. This helps in developing
more robust and universally applicable embeddings. Another important strategy is
the expansion of the model architecture through the implementation of larger and
more complex models. This enhances their capacity to learn complex relationships
and subtle nuances within the data, thereby improving their generalizability.

Transfer Learning

As discussed above, generalizable embeddings require large amounts of data and
large models to achieve state-of-the-art performance [135]. However, merely scal-
ing up the model or dataset size presents practical limitations for many users due
to several factors. The primary constraint is the computational burden, as train-
ing large models on extensive datasets requires substantial computational resources.
Furthermore, data acquisition itself presents another hurdle. Manually labeling, col-
lecting, or pre-processing vast data volumes can be time-consuming, expensive, and
sometimes infeasible. Fortunately, transfer learning provides a powerful approach
by leveraging pre-trained models. At its core, it involves training large neural net-
works on vast, general-purpose datasets. Models such as DINO [23, 92], CLIP [98],
and BYOL [51], developed by leading tech companies such as Meta, Microsoft, and
Google, are examples of this strategy. These models have been trained on datasets
containing millions of objects, utilizing extensive GPU resources in large data cen-
ters. The outcome is a set of highly versatile embeddings capable of recognizing
fundamental aspects of images without being limited to specific tasks. Remarkably,
these embeddings can then be applied to various downstream tasks, even those for
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which they were not originally trained. This is possible because many of these pre-
trained models and their weights are publicly available.

Model Overview

In the early days, the pre-trained models were primarily based on models trained
through supervised learning tasks. Prominent examples include the ResNet [55] and
VGGNet [109] models that were trained on the ImageNet (ILSVRC2012) [102] clas-
sification dataset, which contains more than 1.2 million images of 1000 classes. Due
to the considerable size and diversity of the classes, it represented the state-of-the-
art in the field of general-purpose embeddings for a wide range of downstream tasks.
It is still used today as a benchmark dataset to assess and compare the generalizabil-
ity capabilities of new models. However, the objective of generalizability contradicts
the degree of supervision of the learning task, as the supervision guides the learned
embeddings towards a specific direction (the direction of the classification task), po-
tentially sacrificing their generalizability across other downstream tasks [23]. This
presents a significant challenge: how can we leverage pre-labeled data to learn gen-
eralizable features without restricting the embeddings to the dataset’s specific cat-
egories? For instance, consider an image dataset labeled for animal classification.
The learned embeddings may become adept at distinguishing various animal types,
neglecting other relevant information, such as the surrounding environment in which
the animal is located.

Consequently, over time, approaches have increasingly employed techniques that
require less supervision to learn the inherent visual concepts of the images [23]. In
the initial attempts to loosen the supervision, semi-supervised learning approaches
were employed that, in addition to a small labeled dataset, utilized large catalogs of
unlabeled images. The incorporation of more than a billion unlabeled images into the
training process enabled semi-supervised ResNet models to surpass fully-supervised
approaches on ImageNet, as demonstrated by Yalniz et al. [127]. The advent of
SimCLR [27] paved the way for the development of self-supervised foundation models
that did not necessitate the use of labeled data. A plethora of sophisticated models
have been published in this domain over the past few years, which either employed
a contrastive learning approach [23, 29] or a generative learning approach using
autoencoders [54]. A notable advancement in contrastive learning is the use of
multiple modalities to learn generalizable representations. In these cases, the data
is no longer just represented by a single modality, such as an image, but also by
a textual or audio description. The contrastive learning objective is achieved by
using separate encoders for each modality. This approach pulls similar objects closer
to each other in the joint embedding space and pushes dissimilar objects further
apart. The well-known multi-modal model CLIP [98] employs textual descriptions
for corresponding images to guide the representation learning towards general visual
concepts defined by the text. Describing the visual concepts by text is expected
to create embeddings that contain more abstract visual concepts that are better
transferable between various datasets.

A list of selected deep feature extraction models mentioned throughout this section
is provided in Table 3.1. Here, the models are compared based on their classification
performance on the ImageNet dataset. The scores were taken from the reported
values in the papers and should be viewed as approximate estimates. Over time, the
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Model Year Learning Paradigm FNN Architecture Top 1 Acc.

VGGNet [109] 2015 Supervised CNN 0.715
ResNet [55] 2015 Supervised CNN 0.753

Yalniz et al. [127] 2019 Semi-supervised CNN 0.767
SimCLR [27] 2020 Contrastive SSL CNN 0.765
BYOL [51] 2020 Contrastive SSL CNN 0.796
DINO [23] 2021 Contrastive SSL CNN, Transformer 0.828
CLIP [98] 2021 Contrastive SSL CNN, Transformer 0.839
MAE [54] 2022 Generative SSL Transformer 0.849

Table 3.1: Overview of selected deep feature extraction models for image data. Each
model is shown with its year of publication, the underlying learning paradigm according
to Section 2.2, the FNN architecture, and the top 1 classification accuracy scores on the
ImageNet validation dataset.

models developed more towards the self-supervised learning regime while adopting
a more powerful FNN architecture, moving from CNNs to transformer models that
resulted in stronger classification performance.

Fine-Tuning

Should the accuracy of the results remain insufficient for a specific retrieval setting,
finetuning represents an additional stage where pre-trained models are adapted to
specific tasks [28]. Think of a pre-trained model as a master chef with a vast knowl-
edge of various cooking techniques and ingredients. While they may not be experts
in every cuisine, they possess a strong foundation to adapt to specific dishes. Simi-
larly, the pre-trained model has learned basic visual concepts that can be adapted to
various tasks. In contrast to pre-training, fine-tuning does not necessitate the use of
voluminous datasets. Instead, it focuses on making subtle yet impactful adjustments
to the model’s weights for the specific task at hand. The learning paradigm em-
ployed for fine-tuning may vary depending on the specific case. A supervised learn-
ing approach is commonly utilized, wherein the model is presented with a reduced
classification dataset of the target domain. The fine-tuning process often concen-
trates on the model’s final layers, applying various strategies. These include:

• Adapting learning rates: By implementing varying learning rates for dif-
ferent layers or weights, with the highest rates applied to the final layers, the
adaptation of the model to the new task is emphasized [99].

• Freezing layers: Selectively freezing the weights of certain layers prevents
adjustments to their learned features, thereby preserving the general capabil-
ities of the model while focusing training on task-specific adaptations [76].

• Adding layers: An alternative approach is to add layers to the network at the
end, with configurations tailored to the specific requirements. This allows the
remaining layers to be frozen and only the newly added layers to be trained.

Next to the actual fine-tuning for the specific retrieval task, the new re-training
of the network also allows for adding some additional auxiliary objectives to the
learning process, beyond the primary goal of solving the task at hand. This may
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entail reducing the dimensionality of the embeddings D, for instance, by reducing
the number of neurons in the final layer or enforcing certain geometric properties of
the final embeddings, as demonstrated by Sablayrolles et al. [103].

Post-Processing

If the optimization of the embeddings cannot be integrated into the fine-tuning
phase, either due to the absence of fine-tuning or because the optimization goal
cannot be described by a loss (non-differentiable), it may be addressed in a post-
processing stage [28]. In this phase, the initially derived embeddings undergo cal-
ibration. The objectives of the post-processing phase include enhancing retrieval
accuracy, minimizing the memory requirements of the embeddings, and adapting
the embeddings to suit specific indexing structures. This may involve the following
methods:

• Feature fusion: Multiple extracted embeddings from the same instances,
which highlight different aspects of the input, are merged into a joint, more
powerful embedding through techniques such as pooling or learned meth-
ods [124, 126].

• Transforming data distribution: By employing learned-based approaches
like OASIS [25], the locality in vector space of semantically similar instances
can be enhanced.

• Compression: By leveraging strategies, such as quantization or dimension-
ality reduction, the size of embeddings can be reduced. This can be achieved
by either storing the individual embedding values in a more compact manner,
using fewer bits to represent a single value (quantization) [60], or by reducing
the overall dimensionality of the embedding D using dimensionality reduction
techniques such as PCA [128].
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Figure 3.3: Workflow of indexing and search phase. During the indexing phase, the
embeddings are used directly to construct the indexes or transformed into more compact
representations like hash codes. During the search phase, a search is performed based on
the query supported by the pre-built indexes. The retrieved results are either returned
directly or some search refinement (either re-ranking or query refinement) is done before.
The dashed gray lines indicate optional steps.

3.3 Index Structures for Efficient Search

Once the embeddings have been extracted and post-processed, they are utilized to
setup the actual search functionality, which is shown in more detail in Figure 3.3.
To speed up the search, index structures [85], or simply indexes, are leveraged in
practice. These data structures are designed to organize information in a manner
that makes it easier to perform searches and retrieve data quickly, albeit at the cost
of pre-processing time and storage. The type of index determines whether the index
structures are constructed directly on the embeddings or transformed into more
compact representations before the indexes are created [72]. The actual search is
then performed using the pre-built index structures. Depending on the accuracy of
the results, optional re-ranking steps of the initially retrieved results can be done
before returning the result set to the user.

Computational Complexity: The performance of the index structures can be
evaluated based on their algorithmic complexity with respect to both time and space,
which is articulated through the Big O-notation [110]. As a baseline for comparing
the runtimes of index structures, one commonly refers to the sequential scan, or
“brute force”, where each instance of the dataset is compared to the query one after
another. The time complexity of this approach is denoted with O(N), where N
resembles the size of the dataset. This time complexity shows a linear relationship
w.r.t. the size of the dataset. As the data volume increases, this becomes increasingly
inefficient, as illustrated in Figure 3.4. In contrast, advanced index structures are
designed to offer sub-linear time complexity, significantly reducing the time required
for retrieval. Ideally, these accelerated retrieval capabilities should come with linear
storage scaling O(N), ensuring minimal additional overhead beyond storing the data
itself [72].

Nevertheless, not all methods have been subjected to rigorous theoretical analysis,
and the boundaries of their complexity may not always be clearly defined. This
highlights the importance of benchmarks that assess the presented algorithms in
real-world scenarios with large-scale datasets [8].
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Figure 3.4: A comparison of different time complexity classes concerning the dataset size
and the required number of operations.

Search in CBR: In CBR queries, the common task is to retrieve the most sim-
ilar objects within the dataset [85]. This requirement necessitates the use of in-
dex structures specifically optimized for similarity search. While other query types
exist, such as range search that finds objects within a defined region (see Section
3.3.2), research in CBR primarily focuses on designing index structures for similar-
ity searches, as presented in Section 3.3.1.

A distinct challenge that arises in CBR is the high dimensionality of the data be-
ing processed since the data is commonly represented by high-dimensional embed-
ding vectors [19]. This poses additional challenges to the index structures, as with
increasing dimensionality, the performance of traditional index structures typically
used in the context of databases strongly degenerates due to the curse of dimen-
sionality. To overcome the limitations imposed by the curse of dimensionality, index
structures employed in CBR frequently employ approximation techniques to identify
the most analogous instances, albeit at the expense of diminished accuracy.

3.3.1 Similarity Search

As the majority of queries in CBR rely on the concept of similarity, it is necessary to
have efficient algorithms to identify the most similar matches within large catalogs of
high-dimensional embeddings. This problem is widely studied and is often referred
to as the nearest neighbor (NN) problem, which aims at identifying the closest
point given a query point within a dataset based on a distance measure (see Section
3.2.1) [89]:

Definition 1. Let X = {x1,x2, . . . ,xN} ⊂ M be a set of N points in metric space
M and q ∈M be a query point, NN search is about finding the point NN(q, X) ∈ X,
named nearest neighbor, that is the closest to q concerning a distance metric D, that
is, NN(q, X) = argminx∈X D(q,x).

The interest often extends beyond identifying the single nearest neighbor to finding
multiple close points within X. This introduces variations such as the k nearest
neighbor search (kNN), which finds the top k closest neighbors by distance:

kNN(q, X, k) = A, (3.3)
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where A is a set that fulfills the following conditions:

|A| = k,A ⊆ X, and (3.4)
∀x ∈ A,y ∈ X \ A,D(q,x) ≤ D(q,y). (3.5)

Alternatively, in radius nearest neighbor search (RNN), all points within a specified
distance threshold r from the query point are retrieved:

RNN(q, X, r) = {x ∈ X | D(q,x) < r}. (3.6)

Approximate Nearest Neighbor Search

The following discussion primarily focuses on NN search in D-dimensional Euclidean
space where M = RD. While NN search is well-solved for low-dimensional D [39],
for high-dimensional D, problems arise that are known under the term curse of
dimensionality, which makes exact NN methods impractical (see 3.2.1). To address
this issue, researchers have developed approximate formulations of the NN problem
that perform well even in high dimensions [3]. These are summarized under the term
approximate nearest neighbor (ANN) problem. There are several formal definitions
of the ANN problem, categorized based on the type of approximation offered [89].
These include error-bound approximations, such as c-approximate nearest neighbors,
(c, r)-approximate nearest neighbors) and time-bound approximations, where the
search is bound within a predefined time limit. Despite yielding sub-optimal results,
these algorithms are notably faster, making them practical for higher-dimensional
scenarios. In the widely utilized c-approximate nearest neighbors formulation, the
ANN search is defined as:

Definition 2. Let X = {x1,x2, . . . ,xN} ⊂ M be a set of N points in metric space
M and q ∈ M be a query point, the c-ANN problem is about finding any point
ANN(q, X, c) ∈ X whose distance is at most c · D(q,p∗) for some approximation
factor c ≥ 1, where p∗ = NN(q, X).

Similar to the exact NN search, ANN can be extended to find the top k closest ap-
proximate neighbors (kANN). Throughout the following discussion of ANN algo-
rithms, the terms ANN and kANN will be used interchangeably to refer to the gen-
eral concept of finding sub-optimal nearest neighbors with significantly faster search
speeds.

ANN Algorithms

In contrast to the use of brute force sequential scans to identify the ANN, over
the past decades, more efficient algorithms have been proposed that can be solved
in sub-linear time. These algorithms serve as the foundation for the utilized index
structures in CBR. As stated by Li et al.[72], the majority of algorithms can be
categorized into three classes based on their underlying data structure:

• Partition-Based: These structures decompose the feature space into sub-
spaces to perform the search and are best represented by a tree or forest. Ex-
amples of such approaches include axis-aligned partitioning techniques such as
k-d trees [15], pivoting methods like ball trees [24], and compact partitioning
schemes like cover trees [17].
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Figure 3.5: Space partitioning of a 2D-space using k -d tree.

• Hash-Based: These structures map data elements to compact codes (hashes),
allowing for fast lookup. Two common classes differ based on their used
hash functions: Data-independent approaches such as locality sensitive hashing
(LSH) [57] and data-dependent approaches like learning to hash (L2H) [120].

• Graph-Based: These structures employ graph representations to model prox-
imity. Examples include hierarchical navigable small world (HNSW) [84],
which is regarded as one of the most efficient ANN algorithms to date [38].

While a general overview of all types of index structures will be provided, this
thesis will focus on selected approaches within each category that have been widely
researched and applied.

Partition-Based Search

Partition-based algorithms, as the name suggests, involve decomposing the data
space into smaller subspaces, primarily using hierarchical data structures such as
trees. They operate on the premise of branch and bound, where branches of the
search tree are systematically explored, and bounds are used to eliminate paths of
the tree that do not contain the nearest neighbor.

k-d Tree: A well-known algorithm based on this technique is a k -d tree [15]. A
k -d tree is a binary tree that recursively splits the space into two partitions at each
non-leaf node. The non-leaf nodes can be thought of as separating hyperplanes that
are perpendicular to the axes chosen for the split and which split the points within
this current partition into the two subspaces, as visualized in Figure 3.5. There
are different ways in which the split and also the split axis are determined for the
construction of k -d trees. We will refer to the most commonly used variant, which
employs median-based splitting and alternating axis selection.

Construction: Let X = {x1,x2, . . . ,xN} ⊂ RD be set of N points with xi =[
x
(1)
i , . . . ,x

(D)
i

]⊤
for i ∈ {1, . . . , N}. A k -d tree for X is built recursively, as shown
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Algorithm 3 Constructing a k -d tree
Require: Set X = {x1,x2, . . . ,xN} ⊂ RD, tree depth t ∈ N
Ensure: k -d tree T build for X
1: function BuildKdTree(X, t)
2: if |X| ≤ 1 then
3: return node containing X
4: ϕ← (t mod D) + 1
5: p← median point according to dimension ϕ
6: XL ← {xi ∈ X | x(ϕ)

i ≤ p(ϕ),xi ̸= p}
7: XR ← X \ (XL ∪ {p})
8: H ← {x ∈ RD | x(ϕ) = p(ϕ)}
9: TL ← BuildKdTree(XL, t+ 1)

10: TR ← BuildKdTree(XR, t+ 1)
11: Add node storing H and pointers to TL and TR to the tree T
12: return T

in Algorithm 3. At each level of the tree, a dimension is selected for splitting the
data. The dimension chosen for splitting ϕ is determined by an alternating schema
based on the current depth of the tree, as given by:

ϕ = (t mod D) + 1, (3.7)

where t ∈ N corresponds to the depth of the tree, starting from zero at the root. To
find the splitting point, the points X are sorted by their value in the ϕ-th dimension.1
Let the sorted points be indexed as xi1 , . . . ,xiN such that x

(ϕ)
i1
≤ . . . ≤ x

(ϕ)
iN

. The
median of the points in the ϕ-th dimension is selected as p, which is p = xi⌈N/2⌉ .

A hyperplane H = {x ∈ RD | x(ϕ) = p(ϕ)} is then introduced. The hyperplane splits
the set X into two subsets XL = {xi1 , . . . ,xi⌈N/2⌉−1

} and XR = {xi⌈N/2⌉+1
, . . . ,xiN}.

This median-based splitting strategy ensures that the tree remains balanced, with
the left child potentially containing at most one more point than the right child.
Finally, the node stores the splitting point p and the splitting hyperplane H and
continues with the two child nodes TL and TR until the size of the point set is less
than or equal to 1.

NN Search: Once the tree has been constructed for the point set X, it is possible
to initiate NN queries for any point q ∈ RD. The search process starts by traversing
the tree from the root to a leaf node. This navigation involves choosing between
left or right child nodes based on whether the value of q is less than or equal to,
or greater than the node’s value in the splitting dimension. Upon reaching the
leaf node, the distance between the leaf and the query point is calculated. This,
however, does not conclude the NN search, since the true nearest neighbor can also
be located in a neighboring partition, as illustrated in Figure 3.6. Consequently, the
recursion is unwound through a backtracking procedure. The backtracking process
begins, wherein the algorithm revisits nodes along the path from the leaf node to the
root. At each visited node, the algorithm checks whether the hypersphere centered

1More efficient methods for finding the median in linear time exist, such as median-of-
medians [18].
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Figure 3.6: NN search with k -d tree for query point Q. The blue dashed rectangle
indicates which nodes are visited during the backtracking procedure.

at q with a radius equal to the distance to the current nearest neighbor intersects
the splitting plane of the node. If an intersection occurs, the algorithm explores
the subtree on the opposite side of the node’s splitting plane, which was not visited
initially, to find potentially closer neighbors. If the hypersphere does not intersect
the splitting plane, the algorithm continues walking up the tree. When the algorithm
finishes this process for the root node, the search is complete.

On average, a single nearest neighbor query can be executed in O(logN) [42]. How-
ever, the backtracking mechanism might result in a worst-case runtime of O(N)
when all nodes must be inspected. Employing k -d trees as an index also comes at the
cost of construction time and further space consumption. A k -d tree can be built in
O(N logN) time using linear-time median finding and occupies O(N) space.

Approximation Techniques: The performance of k -d trees strongly degrades
with increasing dimensionality D due to the exponentially growing number of nodes
during the backtracking procedure (due to curse of dimensionality, relative distances
between partitions homogenize). That is why approximation techniques have been
developed for the k -d tree that enable satisfactory performance in high-dimensional
space. Arya et al. [7] proposed an error-bound technique for identifying the c-
approximate neighbors, while also time-bound techniques exist, where the search is
stopped early after inspecting a fixed number of leaves following an optimized order
of leaves during backtracking in a best-bin-first -strategy [14].

Hash-Based Search

Hash-based algorithms transform data items into low-dimensional representations.
These compact codes are sequences of bits termed hash codes, either in binary or
integer form [120]. These hash codes are generated by a hash function h : RD →
{0, . . . ,Ω − 1}, where Ω denotes the maximum number of distinct hash codes that
can be produced. Formally, for a data point x, the hash code z is defined as
z = h(x). In general, multiple hash functions h1, . . . , hΛ are employed in the cal-
culation of the compound hash code z = h(x), where z = [z1, z2, . . . , zΛ]

⊤ and
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Figure 3.7: The general workflow for hash-based methods involves the encoding of data
into compact hash codes using hash functions. This encoded data is then stored in a
hash table index structure to facilitate fast lookup. In a straightforward scenario, only the
points within the same bucket as the query point, corresponding to identical hash codes,
are inspected for ANN search. Figure adapted from Wang et al. [120].

h(x) = [h1(x), h2(x), . . . , hΛ(x)]
⊤, with Λ being the total number of hash functions

used.

Unlike cryptographic hash functions, which prevent different inputs from producing
the same output (so-called hash collisions), these hash functions are designed to
group similar inputs by creating the same output for them [69]. Given a query point
q and a set of points X, the assumption is that the k nearest neighbors of q in
X based on the hash codes will closely resemble the nearest points for the original
points. In other words, the hash codes preserve the locality of the original data.

To achieve efficient retrieval with hash-based approaches, data structures such as
hash tables [120] are commonly employed, as shown in Figure 3.7. These data struc-
tures group the input data into buckets according to their hash code. For a query
point q, only those points that are located in the same bucket are retrieved. These
are commonly referred to as candidate pairs. As a result, the number of distance
computations is significantly reduced compared to a full scan. To further increase
the recall, multiple buckets can be visited or multiple hash tables can be employed
populated by different hash functions. Additionally, to further improve the precision
of the results, the retrieved candidates can be re-ranked based on the exact distance
from the query. Hash-based methods can be classified into two categories according
to the hash functions they utilize [72]. The first category comprises data-dependent
methods, which generate hash functions based on the underlying data (e.g. L2H),
while the second category includes data-independent methods (e.g. LSH).

Data-Independent: Methods such as LSH employ hash functions that were de-
signed independently of the actual data and were first proposed by Indyk and Mot-
wani [57]. LSH encompasses various methods that use different families of hash
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all points that lie within the distance c · r from the query point q, provided that at least
one point p exists with D(q,p) ≤ r.

functions tailored to specific distance functions and embedding spaces. The design
of these hash functions ensures that objects nearby have a significantly higher prob-
ability of hash collisions compared to those that are further apart. This notion is
formalized in the following definition [57].

Definition 3. For a metric space M and a set U , a family H = {h :M→ U} is
called (r1, r2, p1, p2)-sensitive if the following holds for any q,p ∈M:

• if the distance D(q,p) ≤ r1, then the probability PrH[h(q) = h(p)] ≥ p1,

• if the distance D(q,p) > r2, then the probability PrH[h(q) = h(p)] ≤ p2.

Such a family H is referred to as an LSH family.

This definition suggests that the probability of two points being hashed to the same
value should be at least p1 when they are close to each other (distance less than r1),
and no more than p2 when they are considered distant (distance greater than r2).
For an LSH family to be effective, it must fulfill the inequalities p1 > p2 and r1 < r2.
This setup allows for the solution of the (c, r)-approximate neighbor problem by
selecting r1 = r and r2 = c · r, as depicted in Figure 3.8.

Definition 4. Given a set X of N points X = {x1,x2, . . . ,xN} ⊂ M in metric
spaceM and a query point q ∈M, the (c, r)-ANN problem involves identifying any
point ANN(q, X, c, r) ∈ X whose distance from q is at most c · r, provided there
exists a point p ∈ X such that D(q,p) ≤ r. In this context, r is a specified distance
threshold and c ≥ 1 is an approximation factor.

To amplify the gap between the high probability p1 and the low probability p2,
multiple hash functions of the family H are combined to form the compound hash
function h [69]. The resulting compound hash function represents a hash function
from a new family of hash functions G = {g :M→ UΛ}, where Λ is the number of
combined hash functions. How these hash functions are combined can result in the
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creation of various new families of hash functions.2 We distinguish between AND-
constructions and OR-constructions. In an AND-construction, a hash function gAND

is formed by combining Λ hash functions from H. For this function, the hash
codes for points q and p are considered equal, that is, gAND(q) = gAND(p), only if all
corresponding individual hash functions agree, specifically:

∀i{1, . . . ,Λ} : hi(q) = hi(p). (3.8)

The new hash family G can be considered as an (r1, r2, (p1)
Λ, (p2)

Λ)-sensitive fam-
ily.

In an OR-construction where a hash function gOR is constructed by Λ members of
H, gOR(q) = gOR(p) holds true if at least one individual hash function is equal. This
is formally expressed as:

∃i{1, . . . ,Λ} : hi(q) = hi(p). (3.9)

This results in a new hash family that is (r1, r2, 1 − (1 − p1)
Λ, 1 − (1 − p2)

Λ)-
sensitive.

As stated by Leskovec et al. [69], AND-constructions result in a reduction of all
probabilities, whereas OR-constructions have the effect of increasing all probabil-
ities. By cascading multiple AND-constructions and OR-constructions and judi-
ciously selecting Λ, it is possible to push p1 close to 1 and p2 close to 0.

Due to the wide variety of existing LSH approaches for different spaces, the algo-
rithmic complexity varies. In general, it can be said that all approaches provably of-
fer sub-linear query times and sub-quadratic space complexity in high-dimensional
spaces [2]. In the case of Euclidean space (on a unit sphere), the optimal provably
guaranteed algorithm has a query time of O(Nρ) and space complexity of O(N1+ρ),
where ρ = 1

c2
for an approximation factor c > 1 [88]. Despite the existence of known

boundaries for space and time complexity, the selection of the optimal LSH fam-
ily remains challenging due to the discrepancy between theoretical guarantees and
practical performance [2]. This discrepancy can be attributed to the data-agnostic
nature of the algorithms, which assume that all regions of the data exhibit uniform
density (e.g.) to achieve optimal performance. However, such uniformity is rare in
real-world applications, leading to inefficient use of resources as the algorithms fo-
cus on sparsely populated subspaces [94]. This is the primary motivation for em-
ploying data-dependent data structures, as described in the following section.

Data-Dependent: Data-dependent hashing algorithms have been proven to out-
perform classic data-independent hashing algorithms due to their ability to exploit
the underlying structure of the data to construct the hash functions [4]. These meth-
ods are often summarized under the term learning to hash, as they learn a hash
function z = h(x) that maps an input item x into a compact code z. The goal is to
ensure that the nearest neighbors for a query q are as close as possible in the cod-
ing space compared to the true nearest neighbors in the input space [120]. However,
data-dependent algorithms have a significant drawback: they are sensitive to shifts

2We assume that the selection of the Λ hash functions from the family H is performed inde-
pendently and uniformly at random.
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in data and query distributions [1]. Unlike data-independent methods, which guar-
antee worst-case performance, data-dependent techniques may become less efficient
when data distributions shift. When the data distribution changes, the previously
optimized mapping may become imbalanced, leading to inefficient searches and ne-
cessitating a rebuild of the index.

Typically, the different methods are distinguished based on the optimization ob-
jective to preserve similarity, which is: pairwise-similarity persevering, multiwise-
similarity persevering, implicitly-similarity persevering and quantization [72]. Given
the focus of this thesis, we will exclusively explore quantization-based techniques,
as they have become the predominant approach in recent years [38].

Quantization: Recent literature suggests that quantization-based methods offer
superior efficiency compared to other learning to hash methods [72]. While quanti-
zation has been extensively explored for data compression [50], its application in NN
search remained unseen for a long time. Unlike previous hashing methods, which
predominantly used binary representations as compact hash codes, quantization-
based methods transform the input data into a set of finite values [63]. The follow-
ing section will focus on the widely used technique of vector quantization [49].

Formally, a vector quantizer is a function h that maps a D-dimensional vector x ∈
RD to a vector h(x) ∈ C = {ck; k ∈ I}, where the index set I is finite 1, . . . ,Ω [63].
The reproduction values ck are called centroids and the set of reproduction values
C represents the codebook of size Ω. The set of points mapped to a given index i is
referred to as a cell and defined as:

Vi = {x ∈ RD : h(x) = ci}. (3.10)

The Ω cells of a quantizer form a partition of RD.

In order to obtain centroids that represent the underlying data, they must be learned
from the data. In vector quantization, a type of k-means clustering is commonly
used to determine the coordinates of the centroids [44]. In the traditional k-means
algorithm, the objective is to partition N observations into Ω clusters, with each
observation belonging to the cluster with the nearest mean. These cluster centroids
are refined over multiple iterations minimizing the within-cluster variance. The
cluster centers retrieved by k-means represent the codebook C and the input data
is quantized by assigning it the identifier of the closest cluster centroid:

h(x) = argmin
k∈{1,...,Ω}

Deuclidean(x, ck) (3.11)

The memory cost of storing the index value without further processing is ⌈log2 Ω⌉
bits [63]. However, the reduced storage resource comes at the cost of lost precision
in differentiating single instances. This is quantified with the distortion error E,
which is the average distance from all points to their closest centroid:

E =
1

N

N∑
i=1

Deuclidean(xi, ch(xi)) (3.12)

For NN search using quantization, a query point q ∈ RD is first quantized h(q) = cj.
This is followed by the retrieval of all points in the cell Vj with the same hash
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code as q using index structures such as a hash table. An optional re-ranking
step based on the original representations of the retrieved points and the query
can be performed to enhance the accuracy of the returned approximate nearest
neighbors. Typically, increasing the size of the codebook can enhance the accuracy of
the returned approximate nearest neighbors by allowing for a more diverse encoding.
However, this conflicts with the size of the encoded vector, as the latter grows with
each centroid added to the codebook. Especially for high-dimensional data, this
can easily result in a significant increase in the codebook size [63]. For instance,
to transform a 128-dimensional vector, which is not an uncommon dimensionality
in real-world cases, into a 64-bit code, which requires 0.5 bits per feature, Ω = 264

centroids would be required. This makes it computationally expensive to apply
native k-means, as it requires large amounts of data and long training time to learn
the quantizer. Moreover, the mere act of storing the vector representations of the
individual centroids becomes computationally challenging, as this necessitates the
storage of 128× Ω floating values.

Product Quantization: Product quantization (PQ) [63] represents an efficient
solution to this problem. It divides the original vector x into Λ distinct subvectors
uj, with 1 ≤ j ≤ Λ of dimension D∗ = D/Λ, where D is a multiple of Λ. Each
subvector is quantized separately using Λ distinct quantizer. The mapping using
PQ is defined as follows for input x:

x1, . . . ,xD∗︸ ︷︷ ︸
u1(x)

, . . . ,xD−D∗+1, . . . ,xD︸ ︷︷ ︸
uΛ(x)

→ h1(u1(x)), . . . , hΛ(uΛ(x)), (3.13)

where hj is a vector quantizer operating on D∗ dimensions for the j subvector. The
compound code for the vector x is represented as h(x) = [h1(u1(x)), . . . , hΛ(uΛ(x))]

⊤.
This approach significantly reduces the complexity of the used quantizer by focusing
on smaller, manageable subspaces. If the number of centroids is fixed for each dimen-
sion with the parameter Ω∗, the total number of centroids for PQ is given by:

Ω = (Ω∗)Λ. (3.14)

This defines the size of the overall codebook C = C1 × . . .× CΛ, which is the Carte-
sian product of all sub-codebooks. The memory complexity for storing the centroids
is given by O(ΛΩ∗D∗) = O(Ω1/ΛD), which shows that PQ is also capable of stor-
ing codebooks of large Ω, e.g. Ω = 264 for 64-bit quantization, in memory compared
to simple k-means quantization where O(ΩD) is the memory complexity. When
PQ is coupled with a type of multi-dimensional hash table, so-called inverted multi-
index [10], the nearest codewords can be found in O(ΛΩ) time [44]. This shows that
the retrieval does not depend on the dimensionality D and the size of the dataset N ,
but grows linearly concerning parameter Λ and Ω. This, however, represents a com-
plex trade-off between the codebook size and the accuracy of the retrieved results,
which strongly depends on the actual use case and prevalent data properties.

Furthermore, as shown in Figure 3.9, the centroids created with PQ compared to
classic k-means might be sub-optimal and occupy space that is not populated by the
data. Given that PQ performs optimally when the data exhibits balanced variance
across all dimensions, it can create an inefficient encoding for real-world data. To
address this issue, advanced PQ approaches [44] have been proposed that contain
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(a) k-means (b) PQ

Figure 3.9: A comparison of centroids in simple k-means vector quantization and PQ for
x ∈ R2, Ω = 64 and for PQ D∗ = 1. The red points correspond to the centroids while the
gray points represent the underlying data. Despite the fact that the PQ centroids are not
optimal, they are considerably more resource-efficient in higher-dimensional cases.

an optimal space decomposition by treating the quantization as an optimization
problem minimizing the distortion error (Equation 3.12).

Recent Data-Dependent Approaches: Recent research has focused on improv-
ing the mapping from input data to compact codes by building upon the recent
advancements of learning-based algorithms. These approaches commonly employ
models, such as neural networks, to identify an optimal mapping function [66] or
partitioning scheme [36]. Essentially, these models are trained to understand the
data’s inherent distribution, enabling them to generate a mapping function that is
uniquely suited to it. However, a significant limitation of these methods is that they
are typically applied to static datasets, where each data point is mapped precisely
within the index. As a result, introducing new data necessitates retraining the en-
tire model to update the mapping function and the index structure [123]. Alterna-
tively, neural networks are employed to modify the input data so that existing data-
agnostic mapping functions like LSH are working efficiently [103]. This strategy in-
volves modifying the data distribution to optimize the performance of traditional
mapping functions, which are most effective when data is uniformly distributed,
meaning that points are evenly spread in space. This approach leverages the exten-
sive research and understood theoretical limits of existing mapping functions.

Graph-Based Search

The majority of graph algorithms for ANN that have been studied take the form
of greedy routing in kNN graphs [84]. These kNN methods construct a directed
proximity graph, where each data point corresponds to a node and edges connecting
some nodes define the neighbor relationship. The fundamental principle underlying
these algorithms is that a neighbor’s neighbor is likely also to be a neighbor [72].
For a given query point, the search is started at a randomly selected node and the
graph is iteratively traversed [35]. At each node traversed during the search, the
distance between the query point and the adjacent neighbors of the current node
is compared. The neighboring node closest to the query is selected for the next
step, while the minimum overall distance is stored. The search is stopped when
a predefined stopping criterion is met, such as the maximum number of distance
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Figure 3.10: Example of NN search using HNSW with three-layered graph structure.
The search starts in the top layer, where it searches for the nearest neighbor to the query
point Q. Then, it progresses to the next layer, where it refines the search until it reaches
the final layer.

calculations. Theoretically, the underlying structure of these graphs, known as the
Delaunay graph [121], ensures that the greedy traversal will always lead to the true
nearest neighbor. However, in practice, the construction of the graph, particularly
in high dimensions, becomes complex, which is why it is usually approximated using
only the distances between the neighbors. One disadvantage of these graph-based
approaches is that they result in the loss of global connectivity. This is because only
a limited number of nearest neighbors are connected per node. This can become a
significant issue in clustered data, where a substantial number of hops are required
to identify the true nearest neighbor.

An alternative approach is the navigable small world (NSW) [121] algorithm, which
operates on small world graphs to address the loss of global connectivity. The con-
struction of NSW graphs involves the sequential insertion of new elements into the
graph in a random order, with each new node connected to the k closest (approxi-
mate) neighbors of the previously added point. The long edges formed at the begin-
ning of the construction guarantee global connectivity of the graph (small world),
thereby ensuring search efficiency in poly-logarithmic time. The later added nodes
form short-range edges, which ensure search accuracy. Nevertheless, due to its poly-
logarithmic complexity scaling O(log2 N), the original NSW algorithm is still not
performing well for all scenarios, especially for large datasets [121].3

A method called HNSW [84] builds upon NSW by introducing a hierarchical struc-
ture. The algorithm generates multiple subgraphs (levels) at varying granularities,
as shown in Figure 3.10. These layers form a hierarchy, with the topmost layer con-
taining the fewest nodes and each subsequent layer containing progressively more

3The poly-logarithmic complexity of a single greedy search in an NSW graph stems from the
number of distance computations, which nearly equals the product of the average number of hops
taken by the greedy algorithm and the average degree of the nodes encountered along the path.
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nodes, culminating in the bottom layer that contains all the data points. The search
starts in the upper layer, which only contains the longest links. It then searches
for the nearest neighbor until a local minimum is reached. Thereafter, the process
continues to the next layer, where the search commences from the node that was
the nearest neighbor in the previous layer. This process is repeated until the final
layer is reached. The search ends when the nearest neighbor in the final layer has
been found. Compared to the poly-logarithmic search complexity of NSW, HNSW
achieves logarithmic search complexity O(logN) when the number of operations
required to find the nearest neighbor on any layer is bounded by a constant [84].
However, in terms of memory consumption, graph-based algorithms tend to allo-
cate more resources than other approaches, which is largely defined by the number
of stored graph connections. Considering the construction complexity, building an
HNSW index is an iterative insertion of all points, which is merely a sequence of
ANN searches at different layers. Therefore, the construction time scales similarly
to the search concerning the dataset size O(N logN).

Benchmarking

Over the past years, numerous benchmarks [8, 72, 108, 121] have been conducted to
compare the different types of ANN search algorithms to assess their performance
in real-world settings. he experiments have demonstrated that graph-based algo-
rithms, particularly HNSW, are most effective in terms of query time and the accu-
racy of the results in high-dimensional cases. However, in settings where comput-
ing resources are limited and dealing with datasets with billions of points, quantiza-
tion approaches like PQ are recommended due to their small memory costs. It was
also observed that for low-dimensional cases, e.g. R6, exact NN search algorithms
like k -d trees become a competitive alternative to the existing state-of-the-art meth-
ods [8]. In practice, the integration of multiple methods, such as combining HNSW
with quantization, is often employed to create composite index structures. These
hybrids aim to balance memory efficiency with robust search capability, leveraging
the strengths of individual approaches [38].

3.3.2 Range Search

Some of the presented structures for NN search also generalize well for other search
tasks. While other search tasks than NN search are not commonly applied in CBR
due to the type of queries used, we will still introduce the range search problem,
particularly the orthogonal range search problem, that will later be of importance
for our CBR search engine. Broadly, a range query involves identifying the subset
of points within a predetermined range from a given set. For instance, in a two-
dimensional space, a range query might request points falling within a particular
circle. In the special case of orthogonal range queries, ranges are represented by
axis-aligned rectangles. Orthogonal range searching distinguishes itself from other
range search variants by allowing reasoning about each dimension independently
due to the axis-aligned boundaries.

Definition 5. Consider a set X of N points in the D-dimensional space RD. Given
an orthogonal range Q = [l1, u1] × [l2, u2] × . . . × [lD, uD], where li ∈ R and ui ∈ R
represent the lower and upper bounds in the respective dimensions and li < ui holds
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Figure 3.11: Range search with k -d tree. The dark dashed rectangle represents the or-
thogonal range Q, while the grey partitions correspond to the partitions that are inspected
during the tree traversal.

for 1 ≤ i ≤ D, the problem of retrieving data on X ∩ Q, the subset of X that is
contained in the range Q, is called the orthogonal range problem.

Existing methods for orthogonal range search primarily rely on space-partitioning
trees. One method, which is already known from NN search, is the k -d tree. The
k -d tree’s structure, based on axis-aligned partitioning of the space, can be directly
adapted for orthogonal range queries, as described in Section 3.3. The processing
of range queries in k -d trees is described in Algorithm 4, where TL and TR specify
the left and right child node, respectively. With regard to algorithmic complexity,
the space complexity remains the same, O(N), exhibiting linear behavior, while the
query time complexity for range queries is O(DN1−1/D+q), where q = |X∩Q| is the
number of returned points [68]. While the number of returned points for NN search
problems is typically known beforehand and is usually negligible (e.g. by parameter
k for kNN), the number of returned points for range queries is not known and can
significantly influence the query time if, for instance, all points are included in the
range. Consequently, range queries are considered output-sensitive [33].

Another popular index structure for range queries is the so-called range tree, which
enables queries to be answered even faster in O(logD−1 N + q) time. However,
this comes at the cost of an increased construction time and space consumption of
O(DN logD−1 N) [16].

3.3.3 Search Refinement

The refinement of search results is a crucial aspect of information retrieval when
the initial search results fail to meet the user’s expectations, necessitating further
optimization. Extensive research has been conducted to investigate methods for
enhancing query precision [11, 85]. However, these additional refinement procedures
come at the cost of increased query time. This is typically justified when high result
accuracy is essential, such as in person re-identification systems [133].

This section delves into techniques that improve queries by analyzing the initially
retrieved results. Common approaches involve formulating a new, optimized query
based on the initial results. However, some methods bypass this step. These in-
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Algorithm 4 Range search using a k -d tree
Require: k -d tree T build for set X ⊆ RD, range Q = [l1, u1]× [l2, u2]× . . . [lD, uD]
Ensure: Returned points within the specified range Q
1: function RangeSearchKDTree(T ,Q)
2: if T is a leaf then
3: return XT ∩Q
4: else
5: if TL is fully contained in Q then
6: return Report all points in subtree TL
7: else if TL intersects Q then
8: RangeSearchKDTree(TL,Q)
9: if TR is fully contained in Q then

10: return Report all points in subtree TR
11: else if TR intersects Q then
12: RangeSearchKDTree(TR,Q)

clude learning-to-rank techniques that train models to perform re-ranking[77], uti-
lizing different similarity measures for re-ranking [12], or fusing results from multi-
ple independent searches [131].

In the following section, we will examine techniques that issue an optimized query for
search refinement. These include strategies such as relevance feedback, where user
input is utilized to fine-tune the results, and query expansion or pseudo relevance
feedback, which autonomously reissues and re-ranks the query [85, 132]. Approaches
in CBR that exploit specific characteristics of the respective data type, such as the
RANSAC algorithm [95] for geometric structures in images, are not considered in
this discussion as these methods often rely on domain-specific techniques that are
beyond the scope of this general overview.

Relevance Feedback

Methods in this category involve the user in the retrieval process to improve the
final result set [85]. Typically, the user provides feedback on the relevance of the
initially retrieved objects by selecting relevant or non-relevant items that are used to
execute an improved query based on the feedback. This user input allows the search
system to refine its understanding of the user’s requirements, allowing it to present
a revised collection of items that better matches the user’s needs. Usually, the
system may go through one or more iterations until satisfactory results are achieved.
One well-known method is the Rocchio algorithm [104]. This algorithm modifies
the representation of the query in the embedding space by moving the query closer
to the embeddings of elements marked as relevant and away from those marked as
irrelevant. More precisely, it moves the original query point in the embedding space
closer to the centroid of relevant instances and pushes it further away from the non-
relevant instances. For an original query point q0 ∈ RD, the refined query point qm

is computed by:

qm = αq0 + β
1

N+

N+∑
i=1

x+
i − γ

1

N−

N−∑
i=1

x−
i , (3.15)
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where X+ = {x+
1 , . . . ,x

+
N+} ⊂ RD and X− = {x−

1 , . . . ,x
−
N−} ⊂ RD define the

respective sets for relevant and non-relevant instance embeddings and α, β, γ are
weights, usually in the range 0 ≤ α, β, γ ≤ 1, used to weight the importance of each
term. More recent approaches rely on the use of support vector machines (SVMs)
that treat the labeled set of relevant and non-relevant instances as a classification
problem [114]. The success of relevance feedback methods depends on certain as-
sumptions [85]. First, users must have some idea of what they are looking for that
is close to the desired objects. Second, the relevant objects have to be located some-
where close to each other in the embedding space, which means that they have to
form a cluster.

Query Expansion

As opposed to relevance feedback, query expansion techniques refine the search with-
out human interaction and have been widely used in the context of CBR [132, 133].
The idea is to employ the top-ranked instances from the initial search, usually an
NN search, to reissue a new query to obtain a re-ranked list with better accuracy of
the results. Early approaches involved averaging the embeddings of the top k initial
results to calculate the new query vector [31]. Over time, methods evolved to use
more sophisticated models, such as SVMs, to derive new query embeddings [5].

Certain approaches [59, 97, 133] have extended on the concept of query expansion
by redefining neighborhood relationships. This was in response to the observation
that the top k results of NN-based searches may include inaccurate matches, which
could bias the query expansion process in an undesirable direction. This problem
arises from the asymmetric nature of the nearest neighbor criterion. If point a is
the nearest neighbor of point b, it does not guarantee that b is also the nearest
neighbor of a, since there may be a point c that is closer to a than b is. This effect
even multiplies as the range of top k results increases and can lead to cases where
the top k results contain some false matches. To prevent the expanded query from
being biased by false matches, the notion of k reciprocal nearest neighbors (kRNN)
can be employed.

Definition 6. Let X = {x1, . . . ,xN} ⊂ M be a set of N points in metric space
M and given a query point q ∈ M, the k reciprocal nearest neighbors of q are all
points among the k nearest neighbors of q that also have q among their k nearest
neighbors, formally defined by:

kRNN(q, X, k) = {xi | (xi ∈ kNN(q, X, k) ∧ q ∈ kNN(xi, X, k)}. (3.16)

This neighborhood relationship better indicates the similarity of the query item
and the found objects. Therefore, some approaches [97] consider the k reciprocal
nearest neighbors to form the expanded query set instead of adding all top k results,
while others [133] use the set of k reciprocal nearest neighbors to encode them into
new embeddings that are used for re-ranking under different distance measures.
Nevertheless, re-ranking the results based on the k reciprocal nearest neighbors
entails an additional cost for computing the reciprocal neighbors, which is defined by
O(N2 logN) for a dataset of size N [105]. This overhead can be partially mitigated
by pre-computing the neighborhoods for the dataset [133]. It is important to note,
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that the asymmetric relationship of nearest neighbors does not necessarily hold in
ANN search [6].

3.3.4 Limitations

While indexes significantly speed up query response times, their application in CBR
systems frequently encounters overlooked limitations [28]. Common CBR research
does not usually consider the dynamic aspect of datasets. Index structures are
typically evaluated with static data, ignoring the complexities introduced by data
modifications such as updates, deletions, or insertions. Consequently, changing data
often requires the index structures to be rebuilt entirely or significantly degrades
their efficiency. This limitation presents challenges for real-world CBR systems that
must handle evolving datasets.

Moreover, the evaluation of index performance in existing studies occurs primarily
in in-memory conditions, assuming that the entire dataset and its index can be fully
loaded into memory. While some methodologies, like hash-based approaches, aim
to compress data to fit within memory constraints even at large scales, there is a
notable gap in research addressing scenarios where datasets exceed memory limits
and require secondary storage solutions like SSDs or HDDs.

To address this gap, insights can be drawn from database technologies [71], where
index structures are also utilized. In the database context, index structures are
designed not only for fast query retrieval but also for their ability to support a range
of functions, including similarity and range searches to accommodate a wider variety
of use cases. Despite their differences, the underlying index structures often utilize
similar techniques, such as partitioning-based algorithms like k -d trees.

Recently, so-called vector databases such as Pinecone4 or Qdrant5 have emerged
to address these limitations. These databases are specifically designed for storing
and querying high-dimensional embedding vectors, which have seen strong growth
with the rise of deep learning technologies. Vector databases offer optimized search
capabilities tailored for high-dimensional data, utilizing ANN techniques such as
hashing, graph-based methods, and partitioning-based strategies. Furthermore, they
provide features for more effective data and index management, as well as support
for secondary storage.

3.4 Performance Evaluation
The evaluation of the effectiveness of CBR systems is of crucial importance for
both their development and application. In the context of information retrieval,
performance evaluation is used for distinguishing between the assessment of ranked
and unranked results [85].

In settings where results are not ranked, the dataset’s instances are classified as ei-
ther relevant or non-relevant.6 This classification essentially transforms the evalua-

4https://pinecone.io/
5https://qdrant.tech/
6The present overview will be limited to metrics designed for retrieval tasks, where relevance is

binary; items are either relevant or not.

https://pinecone.io/
https://qdrant.tech/
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Relevant Non-relevant

Retrieved True Positive (TP) False Positive (FP)

Not Retrieved False Negative (FN) True Negative (TN)

Table 3.2: Confusion matrix for unranked retrieval.

tion into a binary classification task, where the metrics discussed in Section 2.2 ap-
ply, but with modified definitions for positive and negative outcomes, as detailed in
Table 3.2.

Retrieval tasks usually face the challenge of unbalanced datasets, where non-relevant
instances significantly outnumber relevant ones [85]. In such cases, accuracy be-
comes an unreliable metric, as one could easily achieve high accuracy by categoriz-
ing all instances as non-relevant. To address this imbalance, users frequently em-
ploy the F1-score, which allows for more nuanced performance assessment in skewed
scenarios.

In the context of ranked retrieval, the ranked results are naturally given by the top
k items. Rather than computing precision, recall, and F1-score for varying levels
of k, it is more desirable to obtain a single-figure measure of retrieval quality. One
way to achieve this is to consider the ranked set at a specific cutoff point k and
then calculate precision and recall based on the cutoff set. These metrics are called
Precision@k (P@k) and Recall@k (R@k):

P@k =
TPk

k
, (3.17)

R@k =
TPk

TPk + FNk

. (3.18)

The average precision (AP) score aims at balancing precision and recall [28]. The
metric refers to the coverage area under the precision-recall curve and is calculated
by:

AP =

∑N
k=1 P@k · 1(k)

R
, (3.19)

where R is the number of relevant results for the query from the total number of
instances in the dataset N and 1(k) is an indicator function defined as:

1(k) =

{
1 if item at k is relevant
0 otherwise.

(3.20)

Often the average AP over multiple queries is used to get a more robust estimate
for the retrieval performance, called mean average precision (mAP).
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• Christian Lülf, Denis Mayr Lima Martins, Marcos Antonio Vaz Salles, Yong-

luan Zhou, and Fabian Gieseke. Fast search-by-classification for large-scale
databases using index-aware decision trees and random forests. In Proceedings
of the VLDB Endowment, pages 2845–2857, 2023. (see Appendix A.1)

• Denis Mayr Lima Martins, Christian Lülf, and Fabian Gieseke. End-to-
end neural network training for hyperbox-based classification. In 31st Eu-
ropean Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, ESANN, 2023. (see Appendix A.2)

• Denis Mayr Lima Martins, Christian Lülf, and Fabian Gieseke. Training
neural networks end-to-end for hyperbox-based classification. Neurocomput-
ing. 2024. Under Review. (see Appendix A.3)

4.1 Search-by-Classification
In the preceding part, we examined the utilization of ANN algorithms to enhance
search efficiency in CBR systems. However, as previously stated, the outcomes of
ANN searches frequently yield unsatisfactory results in terms of accuracy and com-
pleteness. As ANN algorithms prioritize the speed of query execution at the expense
of reduced accuracy, the results may not represent the optimal NN. Furthermore,
as the search is usually restricted to finding the top k nearest neighbors, it might
overlook relevant data points residing outside the chosen k neighborhood, particu-
larly for tasks demanding high recall. For instance, when we consider tasks of iden-
tifying specific objects, such as wind turbines in satellite imagery databases, to es-
timate their operational count, ANN search may prove insufficient. Figure 4.1a vi-
sualizes this problem for an example scenario with two-dimensional embeddings. In
the case of identifying wind turbines, the positive or relevant points would corre-
spond to other instances of wind turbines that are contained in the database (DB).
Given a positive query point and a search radius or number of nearest neighbors, a
search relying on the exact nearest neighbors can result in an unsatisfactory perfor-
mance. This is demonstrated in the example, where other relevant points are missed
and non-relevant points are falsely included.1

1This example provides a simplified explanation of the concept. When applied in higher-
dimensional spaces with more precisely defined embeddings, the NN-based methods can become
more robust and effective.
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positive (query)

NN Search

positive (DB)
negative (DB)

(a) Nearest neighbor search

positive (query)
negative (query)

classif. model

positive (DB)
negative (DB)

(b) Search-by-Classification

Figure 4.1: Figure (a) illustrates the process of a nearest neighbor (NN) search in a two-
dimensional space. For a given query point, the search would return all points within a
specified radius, either the radius itself or the radius specified by k. However, this approach
may not yield optimal results, potentially missing relevant, positive points and including
irrelevant, negative points. Figure (b) depicts the scenario of multiple query points that
have been labeled as either positive or negative. In the context of search-by-classification,
a classification model is trained to distinguish between the positive and negative instances.
This process results in the return of all database instances classified as positive by the
classifier, which is represented by the yellow area.

These drawbacks make native NN search an inadequate solution for scenarios where
high precision and recall are crucial in the quality assessment of the result set.
We have identified two avenues for improvement of NN-based search approaches to
mitigate the drawbacks of current approaches. Firstly, to more accurately reflect
the user intent of the query, multiple items must be incorporated into the query.
Secondly, given that multiple items describe the user intent, methods are required
that take into account all query items simultaneously in order to identify similar
items in the database.

As previously mentioned in Section 3.1.1, approaches that utilize multiple inputs for
NN search are already existing. However, these methods are unable to fully leverage
the presence of multiple query items, as they still operate on single-instance NN
search. These methods either execute NN search for each query item individually
and then re-rank the results, or they combine the embeddings of all items into a
single embedding for NN search.

In our work [81], we proposed an alternative solution to the existing NN-based
approaches, that reformulates the problem into a binary classification task. This
approach is therefore termed search-by-classification. The database is considered as
an unknown test dataset with instances that are either labeled positive (y = 1) or
negative (y = 0) with respect to a specific user query. To illustrate, if User A wishes
to search for wind turbines in the database, all instances containing wind turbines
are positive, while all others are negative. Conversely, for a query of User B who is
interested in solar panels, all instances with solar panels are treated as positive. In



4.1. SEARCH-BY-CLASSIFICATION 53

this context, the user query acts as a small training set with multiple positively or
negatively labeled items.

A machine learning model can then be trained on the embeddings of the training
data to learn to separate the positive and negative instances in the embedding space.
It is important to note that the distribution of labels is heavily imbalanced in this
scenario, as the number of positives is way smaller than the negatives, which poses
challenges for the classification model. The search-by-classification approach utilizes
the trained model during the inference phase for the actual search. Here, the model
is applied to the entire database, classifying each item. Finally, only the entries
classified as positive by the model are returned as search results. A figure that
visualizes how search-by-classification approaches implement their search in contrast
to the previously discussed NN-based approaches is shown in Figure 4.1b.

It is hypothesized that the search-by-classification approach will deliver more accu-
rate results for a sufficiently large training set than NN-based methods. This is sup-
ported by three key arguments:

• Binary labels: By allowing users to specify both types of objects the search
should return and those it should exclude, users can more accurately express
their search intent.

• Complex model: A classification model can learn complex rules for iden-
tifying positive instances, whereas a NN-based search primarily retrieves the
most similar items.

• Integrated relevance feedback: As a learning-based approach, search-by-
classification can seamlessly integrate user feedback. By incorporating user-
designated positive and negative examples into the training set through iter-
ative feedback loops, the classification model continuously improves its accu-
racy.

However, in order to identify the positive instances in the database, native search-
by-classification requires the classification model to pass over all instances in the
database, as shown in Figure 4.2. While this is feasible for small datasets, this
sequential process becomes impractical for large-scale data and multiple queries as
the time grows linearly with the number of instances.

Consequently, we developed a solution for search-by-classification that is efficient
even in large-scale data settings [81]. Our proposed method is inspired by the use of
index structures in CBR. It includes a classifier whose inference phase is supported
by index structures to accelerate the retrieval. This involves finding a mapping
between the classification model and the index structures such that the classification
model can be translated into an index-supported query. In our work, we exploited
the mapping between decision trees and k -d trees to accelerate the inference phase.
This is based on the observation that due to the orthogonal nature of the splits
in decision trees (see Section 2.1.1), their leaves correspond to orthogonal range
queries, as defined in Section 3.3.2. Given this mapping, we can speed up the created
range queries by using index structures such as k -d trees that support range queries.
However, additional modifications are required to ensure that these range queries
remain efficient for high-dimensional data, which is generally affected by the curse
of dimensionality.
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Figure 4.2: Traditional search-by-classification methods necessitate training separate
models for each query set. This approach incurs latency when applied to scan the full
database for inference. Our framework addresses this limitation by a co-design of indexes
and models for efficient retrieval of positive instances, significantly reducing search time.
Figure adapted from our work [81].

The following section presents the overall search-by-classification framework. We
refer to the new family of classification models constructed in line with their corre-
sponding index structures as index-aware classifier. Two distinct models were cre-
ated, one based on a decision tree and the other one on a neural network. These
are explained in more detail in Section 4.3. The variant of k -d trees employed as
the underlying indexing structure for our framework is described in Section 4.4. Fi-
nally, in Section 4.5, we conclude with remarks on the experimental evaluations of
our proposed method and discuss some limitations.

4.2 Framework
Our search-by-classification framework presented in Figure 4.3 has been adapted
from the general CBR framework described in Section 3.1.2. Similarly, the work-
flow can be divided into two phases: 1) Offline Preprocessing and 2) Query Process-
ing.

Offline Preprocessing

This phase is passed once before the actual query processing can be started. The
data is extracted by a feature extractor2, which captures the inherent characteris-
tics of the input data in compact feature embeddings. It is important that the em-
beddings are generalizable to any search task and not confined to a specific class
of queries. Index structures are pre-built on the embeddings for accelerating the
search. In order to enable compatibility with the index-aware classifier, we impose
some requirements on the construction of the index structures. These requirements
include the ability to process orthogonal range queries. For our search engine, we
selected a variant of k -d trees due to its wide appliance in research and its straight-
forward implementation.

Furthermore, we require a set of index structures built on subsets of the extracted
embeddings, known as feature subsets. The rationale behind this approach is to

2We used a ResNet101 model [55] pre-trained on ImageNet as a feature extractor with a modified
final layer that outputs embeddings of D = 50.
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Figure 4.3: Our search-by-classification framework accelerates data retrieval by utilizing
an index-aware classifier and pre-built indexes. The classifier leverages efficient range
queries on the indexes, eliminating the need for time-consuming full data scans. Figure
adapted from our work [81].

decompose the original search query into multiple smaller, more manageable sub-
queries that operate on these feature subspaces. By splitting the query into multiple
sub-queries, we can benefit from the reduced complexity of each sub-query, which
makes it significantly faster to retrieve using the index structures. Still, the sum of
all sub-queries must correspond to the same results as the original query.

It is of note that the dimensionality of each subset d should be carefully selected,
e.g. d = 4, to prevent the curse of dimensionality, as described in Section 3.2.1.
Furthermore, depending on the dimensionality of the data D, the number of feature
subsets K should also be carefully selected to ensure good coverage of all available
features of the embedding space. Conversely, the more index structures on feature
subsets are built, the more storage is consumed for storing these additional index
structures.

Query Processing

In this phase, the index-aware classifier handles the actual query workload. Unlike
the classic CBR framework where the search is performed via NN search, we perform
the search via index-supported range queries extracted from the trained classifier.
However, users must provide more precise queries by supplying multiple positive
and negative examples that define their search intent. As is the case with any
classification task, performance is enhanced as more (meaningful) training data is
added. The query items are then transformed into embeddings and forwarded to the
index-aware classifier to train the model. Not all existing classification models are
natively supported to become an index-aware classifier according to our definition,
as this requires the fulfillment of the following requirements:
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• Orthogonal decision boundaries: The learned decision boundaries that
separate the positive and negative classes in feature space must be axis-aligned,
i.e. orthogonal, such that they can be translated into range queries.

• Effectiveness in feature subspaces: Index-aware classifiers must operate
in the given feature subspace to build the decision boundaries in order to make
use of the pre-built index structures that were built on only feature subsets.
The overarching goal is that these models perform as effectively as traditional
classification models, which are not confined to specific subspaces.

These constraints significantly limit the types of classification models that can be
used. Most existing models struggle to create axis-aligned decision boundaries, leav-
ing tree-based methods such as decision trees as the primary candidates. However,
we observed that decision trees exhibited undesirable classification performance on
benchmark classification datasets when restricting the tree construction to feature
subspaces. This motivated us to develop our own index-aware classifiers that are
optimized for the classification under the given constraints. Our first model, deci-
sion branches [81], draws inspiration from the classic decision tree as it also builds
tree-based models that minimize an impurity function. In contrast to decision trees,
our model employs a bottom-up approach, whereby individual trees are constructed
from one instance and subsequently expanded to include additional positive in-
stances. As a follow-up, we also worked on HyperNN [73], an index-aware classifier
that is based on neural networks.

Our search-by-classification framework distinguishes itself from native NN-based
search systems through its integrated relevance feedback mechanism. Should the
initial search results fail to meet the user’s expectations, they may enhance the
outcome by selecting additional positive and negative items from the response set to
incorporate into the training dataset. After this, the classifier utilizes this updated
training set to learn and refine its model in subsequent searches. As the model
training and inference run at a fast pace due to the pre-built index structures, these
extra iterations do not consume a significant amount of time.

4.3 Index-Aware Classifiers

In the following sections, we will delve into the details of our developed index-aware
classifiers. We first start with our tree-based variant named decision branches and
then will continue with the neural network model HyperNN. To describe our algo-
rithms, we consider a binary classification dataset T = {(x1, y1), . . . , (xN , yN)} ⊂
RD×{0, 1}. An instance (xi, yi) with yi = 1 corresponds to a positive or relevant el-
ement while yi = 0 to a negative instance for 1 ≤ i ≤ N . We assume K index struc-
tures of randomly drawn feature subsets F1, . . . , FK ⊂ {1, . . . , D} with |Fκ| = d for
1 ≤ κ ≤ K and 1 ≤ d ≤ D are pre-built.

4.3.1 Decision Branches

Our decision branches model (DBranch) represents a new construction schema for
tree-based classification models that builds the bottom parts of decision trees, which
we call decision branches. Each decision branch is associated with a D-dimensional
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Algorithm 5 BuildDBranch: Constructing DBranch model
Require: Dataset T = {(x1, y1), . . . , (xN , yN)} ⊂ RD × {0, 1}, F1, . . . , FK ⊂

{1, . . . , D} with |Fκ| = d, κ = 1, . . . , K, for some 1 ≤ d ≤ D, 1 ≤ p ≤ K,
µ ∈ {1, . . . , D}, and stopping criterion for decision tree λ

Ensure: Set T = {(B1,B1) , . . . , (BM ,BM)} of D-dimensional boxes B1, . . . , BM

with nb(Bm) ≤ d for m = 1, . . . ,M along with associated decision branches
B1, . . . ,BM

1: function BuildDBranch(T, {F1, . . . , FK}, p, µ, λ)
2: T0 ← {(x, y) ∈ T |y = 0}; T1 ← {(x, y) ∈ T |y = 1}
3: T ← {}
4: repeat
5: Let (x′, y′) by any positive instance in T1

6: gopt ← 0; Bopt ← None
7: F = {Fi1 , . . . , Fip} ⊆ {F1, . . . , FK}
8: for each F ∈ F do
9: B, g ← GreedyMaxGainBox(T0 ∪ T1,x

′, F )
10: if g > gopt then
11: gopt ← g; Bopt ← B
12: T1, R1 ← RemoveInstances(T1, Bopt)
13: T0, R0 ← RemoveInstances(T0, Bopt)
14: B ← BuildDecisionTree(R0 ∪R1, λ, µ)
15: T ← T ∪ (Bopt,B)
16: until T1 is empty
17: return T

hyperbox3 analogous to a leaf node in a decision tree. These boxes are supposed
to be translated into multiple orthogonal range queries for retrieving the data. We
denote a box B according to the notation of a range query in Definition 5 as:

B = [l1, u1]× [l2, u2]× . . .× [lD, uD], (4.1)

where lj ∈ R and uj ∈ R represent the lower and upper bounds in the j-dimension,
respectively, for 1 ≤ j ≤ D, and lj < uj holds. If a feature j is not restricted in both
directions, that is, lj = −∞ and uj = +∞, we call it unbounded. Note that these
features are not considered for the translation into a range query as they put no
constraint on the query. If the dimension j of a box is bounded in both directions,
that is, lj > −∞ and uj < +∞, we call it bounded w.r.t. dimension j, whereas if it
is left- or right-bounded, that is, lj > −∞ or uj < +∞, we call it half-bounded w.r.t.
dimension j. We specify the number of bounded and half-bounded dimensions with
nb(B).

Our construction algorithm aims to create a set of boxes with their associated de-
cision branches that contain a maximum number of positive examples while keep-
ing the number of negative instances in their boxes minimal by minimizing an im-
purity criterion. At first glance, it may appear that this does not deviate from the
construction of decision trees. However, the construction of these boxes takes place

3For simplicity, the term “box” will be used to refer to “multi-dimensional hyperbox” in the
following.
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Algorithm 6 GreedyMaxGainBox: Growing the boxes
Require: Subset S = {(x1, y1), . . . , (xN ′ , yN ′)} ⊂ RD × {0, 1}, x′ ∈ RD, and F ⊂

{1, . . . , D} with |F | = d for some 1 ≤ d ≤ D

Ensure: Box B ⊂ RD with nb(B) ≤ d and gain g ∈ R
1: function GreedyMaxGainBox(S, x′, F )
2: Fs = (i1, . . . , id)← RandomSequence(F )
3: B ← InitialEmptyBox(x′, S, Fs)
4: for j = 1, . . . , d do
5: B ← ExpandBox(x′, S, B, ij)
6: g ← Gain(S,B)
7: return B, g

under the constraints that each box is only bound in a few dimensions and that the
set of bounded dimensions corresponds to the feature subsets F1, . . . , FK for which
index structures are pre-built. For instance, given an index structure constructed
for the feature subset Fκ = {3, 5, 10}, a corresponding box B will possess bounds
(either half-bounded or fully bounded) exclusively for the dimensions indexed by
Fκ, while for all other dimensions, B remains unbounded. This guarantees that the
range queries produced by the boxes are compatible with the existing pre-built in-
dex structures. Furthermore, they rely on a limited subset of features, thus avoiding
the curse of dimensionality, as only the bounded dimensions affect query time. We
refer to this alignment of the construction algorithm with the available index struc-
tures as being index-aware.

Construction Algorithm

Our construction algorithm is described in detail in Algorithm 5. It takes the train-
ing dataset T , the K feature subsets F1, . . . , FK and hyperparameters 1 ≤ p ≤ K
for the number of feature subsets tested per iteration of the box construction, µ ∈
{1, . . . , D} for the number of features tested per split in the decision branches con-
struction as well as the corresponding stopping criterion λ. The construction begins
with the two subsets T1 = {(x, y) ∈ T | y = 1} and T0 = {(x, y) ∈ T | y = 0}.
Over multiple iterations boxes with their corresponding decision branches are con-
structed until no positive instances remain in T1. At each iteration, a random pos-
itive instance from T1 is taken as starting point as well as a random subset of fea-
ture subsets F = {Fi1 , . . . , Fip} ⊆ {F1, . . . , FK}. Among all selected feature subsets,
the algorithm constructs boxes origin in point (x′, y′) that maximize an informa-
tion gain via function GreedyMaxGainBox (see Algorithm 6). The box with the
highest information gain Bopt is selected as the final DBranch model candidate. All
points, both positive and negative, within the box Bopt are eliminated from sets T1

and T0 using the RemoveInstances function for following iterations. This func-
tion divides the input set into two subsets: those inside the box and those outside.
Given the set of positive and negative points included in box Bopt, the correspond-
ing decision branch is constructed via the function BuildDecisionTree (see Al-
gorithm 1). The function builds a regular decision tree for the subset, which results
in the decision branch B. Both the box Bopt and the decision branch B are added
to the set T , which represents the final DBranch model.
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(a) Start (b) i1 (c) i2 (d) Initial box

Figure 4.4: Illustration of InitialEmptyBox. The large red points represent the start-
ing point (x′, y′). Figure adapted from our work [81].

How we construct the individual boxes is determined in the function GreedyMax-
GainBox, which is shown in Algorithm 6. The goal is to create a box B and com-
pute its associated information gain for a given point x′, a feature subset F and a
subset of the training instances S ⊂ T of the size N ′ such that it is bounded only in
the dimensions of the feature subset, which in total nb(B) ≤ d. In general, the box
construction grows the boundaries from the box in F sequentially one dimension af-
ter another. The order of how the dimensions are processed is randomly arranged
by the function RandomSequence. The following procedure can be grouped into
two stages: 1) the box initialization phase defined by the function InitialEmp-
tyBox and 2) the box expansion phase defined by the function ExpandBox. In
the initialization phase (see Line 3), a preliminary box is constructed based on the
given point x′. The goal is to create a rectangle that covers as much space as possi-
ble while no other points than x′ are included. Thereby, we ensure good conditions
for the upcoming expansion phase. The problem at hand is known under the name
maximum empty rectangle containing a query point [52] and is non-trivial to solve
with solutions that require O(log4 N) time complexity. Therefore, we developed a
simple heuristical approach that is still efficient to solve and makes use of random-
ness. We present the technique for a 2D example in Figure 4.4.

Afterwards, the procedure enters the expansion phase (see Line 5), where the box
is expanded by maximizing the information gain (see Equation 2.6). The expansion
proceeds dimension by dimension i1, . . . , id expanding the lower and upper boundary,
as shown in Figure 4.5. For the expansion of dimension ij with j = 1, . . . , d, it only
considers the subset Sij = S ∩ Bij where the box Bij is the same as B except that
in dimension ij the lower and upper boundary lij and uij are set to −∞ and ∞.
This is indicated in Figure 4.5b and Figure 4.5c by the dotted lines. To expand the
lower boundary in ij, all points in (x, y) ∈ S with x < x′ are sorted in increasing
order w.r.t. their distance |xij − x′

ij
| to point x′

ij
in dimension ij. Starting with

I = {(x′, y′)}, the points are then processed sequentially and added to the set I. The
remaining points form the set O = S \ I. We select the split point that maximizes
the information gain G(I, O), as defined in Equation 2.6. Similar to classic decision
trees, we use the Gini index as impurity function. After all or a fixed number of
points have been added without improvement of the gain, the split point with the
highest information gain is chosen as the new lower boundary of B. Analogous to
the lower boundary, we repeat the expansion for the upper boundary and as well
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(a) Inital box (b) i1 (c) i2 (d) Final box

Figure 4.5: ExpandBox: The red points depict positive and the black points negative
instances, respectively. The initially covered point corresponds to the positive instance x.
Figure adapted from our work [81].

as for all dimensions j = 1, . . . , d. Finally, the optimal box for feature subset F is
returned together with its computed information gain.

Models

The final DBranch model T consists of a set of boxes B1, . . . , BM with their corre-
sponding decision branches B1, . . . ,BM . In this context, a box B results from the
bottom-up construction phase (Algorithm 5 Lines 5-13), while B is a decision branch
that corresponds to a small decision (sub-)tree constructed in a top-down manner,
which separates the subset R0 ∪ R1 of the points contained in box B (Algorithm 5
Line 14). The entire DBranch model is shown in Figure 4.6 demonstrating how it
can be employed as an index-aware classifier. The points included in the boxes can
be quickly retrieved via orthogonal range queries supported by the pre-built index
structures (indicated by dashed black rectangles). The retrieved point sets are then
classified into positive and negative by the corresponding decision branches that re-
turn the final set of positive points (indicated by yellow areas). We developed two
versions of how the decision branches B are constructed to separate R0∪R1. Either
the model builds a tree considering all D features or it only resorts to the features of
the current feature subset F . The first approach offers superior classification perfor-
mance, as all features can be leveraged to distinguish between positive and negative
points. However, this approach necessitates the evaluation of all features, which can
be time-consuming for larger datasets. Since the second option operates on the fea-
tures of the respective feature subset, the required features can be directly retrieved
from the index structures without extra loading times. However, this variant has a
slightly worse classification performance, as shown in our experiments [81].

The construction of a box B includes elements of randomness, either through the
random selection of instances (x′, y′) or by expanding the box dimensions in a ran-
domly determined order. Although incorporating randomness is not essential for
constructing a single DBranch model T , it becomes crucial for creating ensembles
of decision branches, such as those seen in standard tree-based ensemble models like
random forests and extremely randomized trees. In these models, randomness en-
hances the diversity within the ensemble, thereby improving the robustness and ac-
curacy of the predictions. Extending decision branches to ensembles can be done by
simply combining the sets of L DBranch models T1, . . . , TL. The database instances
are returned that are classified as positive by a majority vote of the models similar as
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Figure 4.6: Processing user queries via decision branches and pre-built index structures
for large databases. The bounding box B associated with a given B is visualized as a
dashed black rectangle. The leaves of the branches corresponding to the positive class are
highlighted in yellow. Figure adapted from our work [81].

for the random forest defined in Equation 2.11. However, the increased classification
performance of the ensemble models comes at the cost of additional query processing
time since more range queries coming from all L models need to be processed.

4.3.2 Hyperbox-Based Neural Network

Next to decision branches, we also examined the potential of learning orthogonal,
multi-dimensional boxes using neural networks. This approach, which we named
HyperNN [73], was initially developed for model interpretability, as rectangular box
representations of the decision boundaries are often favored for human decision-
making [43]. However, due to the orthogonal decision boundaries, the underly-
ing algorithm also generalizes to be used as an index-aware classifier for search-by-
classification. For the description of the algorithm, we will refer first to the orig-
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inal description and then will transfer it to the use case of index-aware classifica-
tion.

In this context, we will denote the boxes not based on the lower and upper boundaries
as it was done in Equation 4.1, but by the lower boundary and the length span:

B = [l1, l1 + s1]× [l2, l2 + s2]× . . .× [lD, lD + sD], (4.2)

where lj ∈ R and sj ∈ R represent the lower bound and length span in the j-
th dimensions 1 ≤ j ≤ D with 0 ≤ sj. The upper bound uj can be derived by
uj = lj + sj. For a point x ∈ RD, it is contained by box B if and only if for every
dimension j, the following condition is satisfied:

lj ≤ xj ≤ uj ∀j ∈ {1, . . . , D}. (4.3)

The containment of a point x in box B can be defined by an indicator function:

1B(x) =

{
1 if lj ≤ xj ≤ uj ∀j ∈ {1, . . . , D}
0 otherwise.

(4.4)

The entire model is represented by a set of boxes B =
⋃M

m=1 Bm of M boxes
B1, . . . , BM . In a binary classification task, we classify point x by:

TB(x) = max(1B1(x), . . . ,1BM
(x)), (4.5)

which classifies it as 1 if it is contained at least in one box otherwise 0. The goal
of the learning task is to find a set B = {B1, . . . , BM} by solving the following
optimization task:

min
B

1

N

N∑
i=1

L(yi, TB(xi)), (4.6)

where L is a loss function typically represented by the BCE (see Equation 2.15).
The loss is minimized by adjusting the weights, which are represented by the vec-
tors of lower bounds and length spans of the boxes, through gradient optimization.
Specifically, for a given box Bm for 1 ≤ m ≤ M , we denote the weight vector of
all lower bounds as w

(m)
l =

[
l
(m)
1 , l

(m)
2 , . . . , l

(m)
D

]
and the weight vector of all length

spans as w
(m)
s =

[
s
(m)
1 , s

(m)
2 , . . . , s

(m)
D

]
. Therefore, to update the box parameters in

the direction that minimizes the loss, we calculate the gradient of the loss function
with respect to each box’s lower bounds and length spans.

However, the calculation of the gradient becomes impossible due to the non-differen-
tiable operations included in the model. This is mainly attributed to the indicator
functions 1B1(x), . . . ,1BM

(x), which can be seen as a step function according to
Figure 4.7, which is non-differentiable. Therefore, we reformulate the containment
check by differentiable operations. First, we re-define the condition from Equation
4.4 by differentiable operations. Let ω

(m)
l (x) = x − w

(m)
l and ω

(m)
u (x) = w

(m)
l +

w
(m)
s − x, then a point is covered by box Bm when ω

(m)
l (x) and ω

(m)
u (x) only have

non-negative values, formally defined as:

1Bm(x) =

{
1 if ω(m)

lj
(xj) ≥ 0 and ω

(m)
uj (xj) ≥ 0 ∀j ∈ {1, . . . , D}

0 otherwise.
(4.7)
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Figure 4.7: HyperNN uses smooth sigmoid as a differentiable alternative to the classic
step function. Figure adapted from our work [74].

As before, to obtain meaningful gradient information in the backpropagation phase,
we cannot resort to element-wise step functions to check for this property.4 Instead,
we resort to a differentiable surrogate applied to the minimum value (across all D
dimensions) of both ω

(m)
l (x) and ω

(m)
u (x). More precisely, for ω(m)

l (x), we implement
this check via a modified version of the sigmoid function [58]:

σβ(min(ω
(m)
l (x))) =

1

1 + exp(−min(ω
(m)
l (x))/β)

. (4.8)

The parameter β controls the smoothness of the function, as shown in Figure 4.7
(top-right). The smaller β the more closely the function resembles the original step
function while still providing gradient information. Similar to the check of the lower
bounds, we implement the upper bound check with σβ(min(ω

(m)
u (x))). Finally, we

multiply the lower and upper bound checks for producing the differentiable contain-
ment check of box Bm as TBm(x) = σβ(min(ω

(m)
l (x)))×σβ(min(ω

(m)
u (x))). For each

box, a value in the range [0, 1] is output for a point x that indicates the likelihood
of the point being contained by the box. In the context of the entire model TB, the
model should indicate whether the point x is at least contained by one box. This
can be checked by obtaining the maximum over all boxes TB1 , . . . , TBM

, as shown
in Equation 4.5 for the non-differentiable case. However, this approach would only
yield gradient information for the box with the maximum score and no gradient in-
formation for the remaining boxes, which weakens the training of the model. There-
fore, we also employ a smoothened function of the max operation δγ:

δγ(TB1(x), . . . , TBM
(x)) =

∑M
m=1 TBm(x) exp(TBm (x)/γ)∑M

m=1 exp(
TBm (x)/γ)

, (4.9)

where values close to 1 denote containment of x and γ controls the smoothness
of δγ.

All described operations to create a differentiable box containment check form the
neuron in the HyperNN and are visualized in Figure 4.8a. The entire HyperNN
model, composed of multiple neurons TB1 , . . . , TBM

, is shown in Figure 4.8b. Training

4In the forward pass, we still output the discrete values to make the model predictions.
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Figure 4.8: Architecture of HyperNN. Figure adapted from our work [73].

the HyperNN network involves optimizing the weights of each neuron for the weight
vectors corresponding to lower bounds, wl, and length spans, ws, by minimizing
the loss function outlined in Equation 4.6. Notably, we leverage the length spans as
trainable parameters instead of the upper bounds. This choice promotes stability
during gradient optimization. We hypothesize that optimizing the length span is
mathematically more tractable than optimizing the upper bound’s location in high-
dimensional spaces, which could also be proven experimentally.

To make HyperNN useable as an index-aware classifier, we restrict the feature spaces
in which each neuron builds its box. Specifically, for each feature subset F1, . . . , FK

for which indexes have been preconstructed, we instantiate a neuron. Each neuron
learns a box Bκ for 1 ≤ κ ≤ K that at maximum has bounded or half-bounded
dimensions in Fκ. In the remaining dimensions, the box is unbounded. To reduce
the number of range queries, only the boxes containing at least one point of the
training set will be used. With this filtering of irrelevant boxes, we can also increase
the number of boxes per feature subset to improve the search accuracy without
significantly harming the query time. However, this comes at the cost of additional
construction time for the entire model since the gradient optimization becomes more
computationally expensive when more boxes and weights are considered. This can
be partially mitigated by moving the computation to the GPU. Since the underlying
neural network structure of HyperNN is built based on the deep learning library
PyTorch [93], it benefits from the library’s GPU acceleration, enhancing the speed
of the compute-intensive gradient optimization. Yet, this requires the search engine
to include a GPU, which can substantially increase power consumption.

4.4 Index Structure

For our search engine, K index structures with d-dimensional features of the size
N are pre-built. Given the extensive storage demands these indexes can impose,
especially with larger datasets, it is critical to address potential memory resource
constraints on standard server setups. To mitigate these concerns, we employ a
variant of the k -d tree, called k-d-b tree [100]. In this variant, the leaf nodes, which
contain the embedding vectors of the points and thus account for most of the storage
cost, are stored on disk. Conversely, the internal nodes contain only boundary
information of the partitions and are kept in memory. The splitting mechanism
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Figure 4.9: Impact of leaf size on query time and memory consumption of a single k -d-
b tree. No results for d = 6 and leaf size 22 due to exceeding machine memory capacity.
Figure adapted from our work [81].

remains the same as in the k -d tree described earlier. Also, the query processing
remains similar to that described in Section 3.3.2 for the regular k -d tree, where
only the leaves are inspected that intersect with the query rectangle. For the k -d-b
tree, this means that only the intersecting leaves are loaded from the disk.

The number of data points stored in a leaf node, often referred to as the leaf size,
plays a critical role in the efficiency of a k -d-b tree. Smaller leaves enable tighter
bounding boxes around data points, which in turn translates to a reduction in false
positive points loaded during a range search. The search process examines fewer
irrelevant data points, potentially leading to faster retrieval times. While smaller
leaves improve search efficiency, they can negatively impact I/O performance. Mod-
ern storage systems operate with fixed-size data blocks, also called pages. If leaves
are smaller than the page size, accessing them incurs the overhead of reading the en-
tire page, regardless of the actual data volume needed. This can lead to inefficient
bandwidth utilization. Furthermore, the reduction in leaf size results in the forma-
tion of more complex trees, which in turn necessitates the allocation of additional
memory to accommodate the individual trees.

These effects were also demonstrated in our experiments [81], in which we evaluated
various leaf size configurations for a single k -d-b tree and compared the query times
and memory requirements for multiple range queries extracted from our DBranch
models.5 We made the evaluations for feature subset sizes d = 3 and d = 6 on
an aerial imagery dataset comprising 1,441,557,000 instances, which had been pre-
processed by a ResNet101 feature extractor into a feature vector. Our experiments
focused on “cold” storage queries, ensuring disk and operating system caches were
cleared to prevent caching effects on query time. The results are presented in Figure
4.9. It was demonstrated that the leaf sizes are not only influenced by the system
specifics but also by the size of the feature subsets d. Notably, even for large-scale
datasets, the memory footprint of a single k -d-b tree remains minimal, with sizes as

5All experiments throughout this thesis were conducted on an Ubuntu 18.04 server with 24 AMD
EPYC 7402P cores, 192 GB DDR4-RAM and 30 TB of NVMe storage.
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Figure 4.10: Scaling behavior of our k -d-b tree concerning dataset size N compared to
asymptotic curves of other complexity classes. Figure adapted from our work [81].

low as 24 MB for d = 3 and 48 MB for d = 6 for a leaf size of 5,632. This allows us
to hold a large number of trees in memory even on commodity hardware.

We further analyzed whether the theoretical sublinear time complexity of range
queries over a k -d-b tree can be achieved in practice. To this end, we measured the
query time τquery of the k -d-b tree for increasing dataset sizes N using the aerial
imagery dataset. These times were then compared to the theoretical asymptotic
curves for the logarithmic O(logN) and linear O(N) complexity classes, as well as
the time complexity O(DN1−1/D) of a standard k -d tree for orthogonal range search.6
The results are presented in Figure 4.10, which demonstrates the scaling behavior
of the k -d-b tree implementation. Notably, the results fall between the asymptotic
curves for O(logN) and O(DN1−1/D).

4.5 Concluding Remarks
In the previous sections, we explored the distinct elements that comprise our search-
by-classification framework. In the forthcoming discussion, we will present detailed
insights from our experimental evaluations and address the observed limitations of
the framework.

Experimental Evaluation

In our experiments [81], we demonstrated that our search-by-classification frame-
work performed particularly well on large-scale datasets. The approach was evalu-
ated on the previously described aerial image dataset, comprising 1,441,557,000 in-
stances. The embeddings were extracted with dimensionality D = 50 using a fine-
tuned ResNet101, resulting in a 600 GB embedding vector. Additionally, a hold-
out set of 110,000 instances was labeled for seven classes (chimney, plane, ship, so-
lar panel, storage tank, wind turbine, and others) to evaluate the retrieval qual-
ity in terms of F1-score. Multiple k -d-b tree index structures for d = 3 were con-

6In our experiments, we kept the number of returned points, q, constant, so q is neglected in
the runtime analysis.
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structed with different numbers of feature subsets K ∈ {50, 150, 300} and a leaf size
of 5,632.

A series of queries was generated for each tested search model on the labeled training
set, comprising 30 positive instances of the respective class and 30,000 negative
instances. This was done to account for the skew in the class distribution in the
dataset, which was largely dominated by the “others” class. In total, we compared
different variants of our DBranch models and ensembles (DBEns) with classic scan-
based models, including decision trees (DTree), random forests (RForest), and extra
trees (ExTrees) as well as a nearest neighbor search baseline (NNB). The NNB
reflects the expected classification performance when users utilize a search engine
based on NN that accepts only single-instance queries. To ensure a fair comparison,
the NNB is treated as a model in which all k nearest neighbors generated in response
to a user query are classified as positive. Conversely, all remaining instances are
classified as negative. The value of k corresponds to the actual number of positive
instances associated with each user query, providing the NNB with a theoretical
advantage, since this information is typically not known beforehand. Two methods
for NNB were tested, where all D features were used to build a k -d-b tree and only
one randomly selected feature subset was pre-built for the decision branches. The
search results using all features achieved similar performance in terms of F1-score at
significantly higher query times. Therefore, only the results of the NNB operating
on one feature subset were reported. The query time of the NNB search could be
even further reduced by employing ANN search at the cost of even lower retrieval
quality.

For our DBranch models, we evaluated both versions of the top-down construction
phase described earlier, where either all features are considered (denoted with ‡)
or only the features where the decision branch is bounded by the features of the
associated box (denoted with †). For our ensemble model, we discarded the top-
down construction phase as the ensembling itself was already sufficient to achieve
satisfactory classification performance, with the advantage of a faster query time.
We compared two versions with 5 and 25 models as part of the ensemble, labeled 5t
and 25t. In addition to the retrieval accuracy, which was measured by the average
F1-score across all queries, the average time of the entire query execution was also
recorded in seconds. This was split into the phases τtrain for the training of the
classifier, τquery for the retrieval of the positive database objects, and τtotal as the
sum of both. The results of the experiments are presented in Table 4.1. They
demonstrate that our index-aware classifier could achieve similar performance to the
classic tree-based classification models while being significantly faster in retrieval.
For K = 300, we could achieve a speedup in retrieval by a factor 715× for the single
decision branches model and 195× for the ensemble model compared to their scan-
based counterparts. In comparison to the NNB search, the NNB approach achieved
the fastest retrieval performance. However, the query results were significantly worse
than those obtained using classification-based approaches.

Limitations and Future Research

The experiments presented in Table 4.1 demonstrate that the set of index structures
required for our original search method incurs additional storage costs that exceed
the size of the original dataset. It can be observed that, in general, leveraging more
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Model K = 50→ 2.17 TB K = 150→ 6.5 TB K = 300→ 13 TB

τtrain τquery τtotal F1 τtrain τquery τtotal F1 τtrain τquery τtotal F1

DBranch† 0.310 1.445 1.756 0.801 0.399 1.090 1.489 0.824 0.567 0.892 1.459 0.847
DBranch‡ 0.335 16.618 16.953 0.818 0.420 14.685 15.105 0.833 0.672 13.844 14.516 0.854
DTree 0.855 1,043.433 1,044.288 0.829 0.855 1,043.433 1,044.288 0.829 0.855 1,043.433 1,044.288 0.829
NNB — 0.298 0.298 0.431 — 0.298 0.298 0.431 — 0.298 0.298 0.431

DBEns5t 0.529 9.760 10.288 0.895 0.993 5.666 6.658 0.914 1.862 5.156 7.018 0.912
DBEns25t 0.891 28.607 29.497 0.915 1.543 22.639 24.182 0.925 2.729 19.716 22.445 0.930
RForest 0.274 1,319.688 1,319.961 0.904 0.274 1,319.688 1,319.961 0.904 0.274 1,319.688 1,319.961 0.904
ExTrees 0.122 1,332.026 1,332.148 0.950 0.122 1,332.026 1,332.148 0.950 0.122 1,332.026 1,332.148 0.950

Table 4.1: Results on the aerial image data set encompassing around 0.6 TB of data.
Time is given in seconds. Index size is reported next to each value of K. For each model,
we report the measured times of the individual query phases and the retrieval quality in
terms of F1-score. Table adapted from our work [81].

feature subsets for the DBranch models leads to higher retrieval accuracy, but at the
cost of increased storage requirements for the pre-built index structures. Therefore,
it is necessary to balance the retrieval quality and available storage capacities based
on the specific use case. Consequently, we further investigated the potential of
reducing the size of the embeddings to lower the storage capacities involved, which
amounted to 600 GB of data. To address this challenge, we explored the possibility
of reducing the feature vector size while maintaining good retrieval quality through
quantization, as described in Section 5.3.

It is important to note that the k -d-b tree index structures that we used are best
suited for static data environments. The insertion, update, or deletion of data
records would necessitate the rebalancing of each of the K index structures, which
would cause additional processing time. Alternative index structures, such as the
bkd-tree [96], extend upon the original k -d-b tree by optimizing the index structure
for bulk updates. This could be relevant for dynamic data scenarios, where the data
is constantly changing and minor decreases in the query performance are acceptable.
The modular design of our search-by-classification framework facilitates the replace-
ment of the utilized index structure, thereby enabling it to evolve in tandem with
the emergence of new developments in multi-dimensional index structures [71].
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Having established a functioning and efficient search-by-classification framework, we
proceeded to apply it to real-world scenarios in order to demonstrate its effectiveness.
To facilitate its wider applicability to other researchers and their own use cases,
we developed a search platform that integrates our search method and is accessible
to the public. Based on this platform, we created two prototypes for geospatial
imagery and text-based image search. We actively selected use cases, where users are
confronted with ever-increasing amounts of data and where approaches to quickly
navigate through the data are strongly demanded. Furthermore, while working
on the new prototypes, we also addressed the inherent drawbacks of our original
proposed search-by-classification framework. This involved reducing the storage
overhead of the index structures using quantization and improving the quality of
the embeddings by using better feature extractors.

5.1 Open Search-by-Classification Platform
In our work [82], we introduced an open search-by-classification platform. Given a
dataset of any multimedia content, such as images or videos, and their correspond-
ing extracted embeddings, the platform provides the necessary software for setting
up a search-by-classification system. It consists of three main components namely
the search, the data, and the web application. Figure 5.1 shows the overall system
architecture of the required components and their interaction during the query pro-
cessing phase. All of the individual services communicate via pre-defined interfaces
using REST API calls. These allow for an independent deployment of the individual
services on different servers, which makes it suitable to be deployed in cloud environ-
ments. Furthermore, since each service is containerized using Docker, each service
is highly scalable according to the workload. The required data, consisting of the

69
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Figure 5.1: System architecture of our search-by-classification platform. It consists of
three services: web, data, and search, representing the entire search engine application.
The illustrated workflow outlines the internal process followed when a user submits a query
to the search engine. Figure adapted from our work [82].

raw data and the index structures, are decoupled from the respective services and
can be stored on external storage systems such as network storage, which offer vast
storage capacities. The functions of each service within the platform are summa-
rized as follows: the search service contains the actual search logic. It brings all the
necessary software required to run the index-aware classifier (either DBranch or Hy-
perNN) and is also responsible for managing the index structures. Prior to queries
being processed, the search service must build the index structures. The data service
stores and manages the raw multimedia data that is required to return the search
results. In the case of an image search engine, it stores the image data and returns
the set of images for the query response set. The web service represents the user in-
terface of the search engine, which is provided via a web service. As the web service
is use-case specific, it must be customized before it can be set up. For the geospa-
tial search engine, a web map service was used for the web frontend of the search
engine while for the text-image search engine, a text interface was presented.

5.2 Geospatial Image Search Engine

The initial application scenario for our search-by-classification platform was for
geospatial imagery. In recent years, there has been a significant increase in the vol-
ume of geospatial imagery, a trend that is expected to continue in the future [30].
Earth observation missions such as Sentinel [70] or Landsat [116] provide daily and
openly accessible images from the Earth’s surface that produce terabytes of data
every day. Navigating through these amounts of data becomes a significant burden
for users, hindering their ability to generate value from the available data. There-
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Legend: □: Positive selected □: Negative selected □: Location of cursor □: Result □: Result + selected

(a) Define user query (b) Retrieve results

Figure 5.2: Demonstration of RapidEarth’s web interface. The user defines the query by
selecting positive and negative patches on the map. The search returns all patches that fit
the query and highlights them on the map. Figure adapted from our work [82].

fore, we proposed RapidEarth, a search-by-classification engine for geospatial im-
agery [82].

As shown in Figure 5.2, the search engine is designed to identify objects of interest in
large catalogs of geospatial imagery displayed on a web map. Following the search-
by-classification paradigm, users can define their search intent by selecting positive
(objects of interest) and negative (objects not of interest) instances to describe their
search intent. The web map interface facilitates this process as the user can click
on instances on the map to assign a label. Under the hood, the search is then
executed using our index-aware classifiers. The resulting instances are then mapped
according to their locations on the map, allowing the user to inspect the results and,
if necessary, refine them.

Our search engine RapidEarth is built on an aerial dataset from Denmark in the
year 2018, with a resolution of 12.5 cm per pixel. The dataset has been divided into
a grid of overlapping patches, resulting in 90,429,772 patches for the entire country
of Denmark. In order to enhance the feature extraction process, the ResNet-based
feature extraction employed in our initial search-by-classification system is replaced
with a more sophisticated self-supervised feature extractor, namely DINO [23], which
was trained on a random subset of 400,000 image patches.1

In conclusion, we were able to establish a functioning prototype search engine for
the entire area of Denmark that could respond to queries within seconds due to
the pre-built index structures. RapidEarth has demonstrated considerable potential
across various applications. For instance, environmentalists seeking to identify areas
of deforestation similar to those in the Amazon can leverage RapidEarth to discover
previously unnoticed regions. Moreover, the platform could be used for the tracking
of animal groups across vast landscapes, such as those found in Africa, by utilizing
high-resolution imagery. With all the essential code for RapidEarth made publicly
accessible, we encourage the exploration and development of new use cases for this
technology.

1In this case, leveraging pre-trained weights trained on general-purpose image datasets that are
publicly available for DINO did not yield significant benefits during pre-training due to the domain
gap between natural images and remote sensing imagery [87].
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5.3 Text-Image Search Engine

In a second application of our search-by-classification platform, we addressed the
text-image search domain. This involves locating images based on textual queries,
similar to functionalities seen in platforms such as Google Images, Pinterest, or
Flickr. Due to the continually increasing number of images posted on the web, the
need for efficient search methods is high. However, we posit that the search quality
of the results can even be further optimized to the needs of the user when employing
our search method that allows for iterative fine-tuning of the results based on user
feedback. To demonstrate a potential application scenario for our platform in text-
image search, we proposed our prototype CLIP-Branches [83]. As the name implies,
we employ the CLIP model (see Section 3.2) as a novel pre-trained foundation for
our feature extractor. CLIP is a multi-modal model trained on text-image pairs
to create more generalized embeddings. It comprises two individual encoders for
images and text, both of which produce embeddings in the same feature space.
Thereby, similarities between images and text pairs can be measured by considering
only their embeddings. This property provides the foundation for our text-image
search engine.

However, our original search-by-classification approach suffered from a large storage
overhead, caused by the extracted high-dimensional embedding vectors, which was
further multiplied by the utilized index structures. This can become a significant
burden for large image databases with billions of instances, where the storage over-
head becomes too massive. To reduce the storage requirements while maintaining a
satisfactory level of retrieval quality, CLIP-Branches is designed to make the exist-
ing embeddings more compact by modifying the inherent CLIP encoders. Our mod-
ifications entail two improvements: firstly, the embedding size is reduced by adding
a final model head to the encoders with a smaller dimensionality. Secondly, quanti-
zation is used to reduce the storage requirements of the embeddings. The improve-
ments to the feature extraction procedure are exemplified in Figure 5.3. The fig-
ure also reports the storage savings for the largest employed image dataset, which
consists of more than 260 million images and consumes more than 8 TB of storage.
The improved feature extraction results in embeddings of the size of 8 GB for all
images.
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Model Head

To further improve the efficiency of the CLIP feature extractor, custom model heads
are appended to the CLIP encoders. These heads consist of new fully-connected lay-
ers added at the network’s end, effectively reducing the final embedding dimension-
ality from D = 512 to D′ = 32. To calibrate the new head modules, the models are
trained on the MSCOCO Image Captioning (MSCOCO) dataset [75] with 82,612
training samples and 40,438 validation samples containing images with their respec-
tive textual descriptions. During this training phase, all the weights of the original
CLIP model are frozen to fine-tune the newly added layers exclusively. The train-
ing was conducted over 100 epochs under the same settings as the original CLIP
model.

Quantization

A specialized regularization term is incorporated into the retraining process of the
CLIP model to optimize the embeddings for the intended quantization. This reg-
ularization promotes a uniform distribution of feature vectors across the spheri-
cal feature space, which enhances the performance of the subsequent scalar quan-
tization process. Scalar quantization is a method of reducing the number of bits
required to represent each value in the embedding. This is typically achieved
by transforming float32 values (4 bytes) into uint8 values (1 byte) by map-
ping each value to one of 256 possible integer values. To this end, the so-called
Kozachenko-Leononenko (KoLeo) regularization [103] is adopted. Given a batch
X = {x1,x2, . . . ,xN} of N embeddings, each within a D-dimensional space, the
KoLeo regularization function, denoted as LKoLeo, is formally defined as a mapping
RN×D → R:

LKoLeo(X) = − 1

N

N∑
i=1

log ρX,i, (5.1)

where ρX,i = minj ̸=iDeuclidean(xi,xj) is the minimal Euclidean distance between xi

and any other point in the batch X. In total, the embedding size is reduced by a
factor of 64 due to the two improvements described above (more precisely, from 512
values with 4-byte precision to 32 values with a 1-byte representation).

Search Engine

The extracted compact text and image embeddings are used to build our new text-
image search engine, CLIP-Branches, which is visualized in Figure 5.4. Similar to
traditional search engines, users define their search intent by providing a textual de-
scription. This text is transformed into an embedding using our feature extractor
(Step ❶) to perform an ANN search to retrieve the top k results (Step ❷). How-
ever, the initial results presented to the user may not fully satisfy the user’s needs
(Step ❸), either because they are inaccurate or incomplete. In scenarios where re-
trieving all relevant results is crucial, and missing even a single important instance
is expensive, traditional image search engines with their top k retrieval approach
may not be sufficient. Therefore, CLIP-Branches includes a fine-tuning stage where
the user can label the initial top k results whether they fit or do not fit the query
intent (Step ❹). This trains our index-aware classifiers (Step ❺) to retrieve a more
complete and accurate set of instances (Step ❻) efficiently using the pre-built index
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Figure 5.4: Search workflow of CLIP-Branches. Traditional text-to-image search engines
typically only employ steps ❶ to ❸ while CLIP-Branches adds a fine-tuning stage to refine
the initial search results (Steps ❹-❼). Index structures are employed during the search for
faster execution. Figure adapted from our work [83].

structures. This can be further improved by fine-tuning the results over multiple it-
erations (Step ❼).

Experiments

In our experiments, we demonstrated the effectiveness of CLIP-Branches. Figure 5.5
compares the search accuracy of the fine-tuned results with that of the initial top k
results that users would typically obtain from NN-based search engines. Our experi-
ments on multiple benchmark datasets show that our fine-tuned search using index-
aware classifiers outperforms typical NN-based search on average after 22 positive
instances have been labeled for training for the single DBranch model and 8 for our
DBEns model. As a competitor, we used an NN search approach, treating it as a bi-
nary classifier. In this context, the k nearest neighbors found in the test set were con-
sidered to be positive (y = 1), while all other instances were considered to be nega-
tive (y = 0). Similar to the experiments in Section 4.5, we set k to the true number of
positive instances in the test set. Notably, the CIFAR-10 dataset required the most
labeled positive examples to outperform the traditional NN search, likely due to the
high efficacy of NN search, which presents a substantial hurdle for our method.

Furthermore, we evaluated the performance of various deep feature extraction tech-
niques based on the CLIP model and the impact of quantization on the resulting
embeddings. Our experiments utilized the MSCOCO dataset to extract embeddings
from an unknown test set using four distinct methods:

(1) CLIP (D = 512): original CLIP features with dimensionality D = 512,

(2) CLIP + PCA: PCA is applied to original CLIP features, reducing dimen-
sionality to D′ = 32,

(3) CLIP + Head: embeddings extracted via the CLIP model. The model was
extended with a custom model head, which was fine-tuned on the MSCOCO
training set, resulting in outputs with a dimensionality of D′ = 32,

(4) CLIP + Head + KoLeo: the custom model head was further fine-tuned to
incorporate KoLeo regularization into the loss function.
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results among different image benchmark
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MSCOCO Accuracy
Recall@ 1 10 100
CLIP (D = 512) - - - 0.474
CLIP + PCA 0.683 0.757 0.802 0.144
CLIP + Head 0.831 0.890 0.926 0.390
CLIP + Head + KoLeo 0.953 0.970 0.985 0.404

Table 5.1: Comparison of quantization meth-
ods applied to raw CLIP features for the
MSCOCO dataset, detailing Recall@k scores
post-quantization, alongside zero-shot classi-
fication accuracy. Each quantization method
reduces the feature dimensionality to D = 32.
Table adapted from our work [83].

To assess the quality of these embeddings, we measured the zero-shot classification
accuracy on the test set. In Table 5.1, it is shown that our CLIP + Head + KoLeo
embeddings outperformed the other methods with reduced dimensionality in terms
of classification accuracy. This indicates that these embeddings retain a substantial
portion of the information inherent to the original CLIP features.

Moreover, we evaluated how well the neighborhood structures were preserved after
quantization by computing the Recall@k. This metric compares the set of nearest
neighbors determined from quantized features to those identified from the same set
of unquantized features. A Recall@k value close to one suggests a high overlap, indi-
cating minimal impact from quantization on the corresponding feature set. It should
be noted that we report Recall@k values exclusively for the reduced feature sets, as
comparing these values with the original CLIP features with dimensionality D = 512
would not be appropriate. Table 5.1 illustrates that the features processed with our
head and KoLeo regularization preserve neighborhood structures more effectively
through quantization compared to those processed using traditional methods (e.g.
CLIP + PCA), or those without KoLeo regularization (CLIP + Head).

With the introduction of CLIP-Branches, we successfully demonstrated the effec-
tiveness of our search-by-classification method in text-image search engines. Fur-
thermore, by reducing the size of the embeddings, we have efficiently addressed the
inherent storage challenges associated with this technique. These improvements sig-
nificantly boost performance in resource-constrained environments, positioning our
method as a robust alternative to traditional approaches.
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Chapter 6

Conclusion and Outlook

The primary objective of this thesis was to develop a co-design approach that inte-
grates machine learning techniques with index structures to enhance the efficacy of
large-scale data retrieval. This approach should be further validated through real-
world applications to demonstrate its practical relevance.

Summary

The key innovation lies in our search-by-classification method, which uses classifica-
tion models to frame the retrieval task as a binary classification problem. Instead of
relying on a single query item, our approach utilizes multiple positive and negative
examples to capture the user’s search intent more precisely. With a sufficiently large
query set, we could significantly outperform the accuracy of traditional NN-based ap-
proaches. To ensure efficient application on massive datasets, we introduced index-
aware classifiers. These models seamlessly integrate with pre-built indexes, enabling
fast retrieval while maintaining high result accuracy. We developed two different
index-aware classification models that can be utilized in our search framework.

The practical value of our framework is showcased through two functional proto-
types, RapidEarth and CLIP-Branches, built upon our open search-by-classification
platform. The underlying software framework allows for straightforward adaptation
to diverse use cases, fostering broader adoption and facilitating future research en-
deavors.

Limitations and Further Research

While our proposed method has shown promising results, we also observed some
limitations:

User Engagement: Although accurate, our search-by-classification method re-
quires users to create large query sets, which can be time-consuming, especially
when data access is limited or the items being searched are rare. To mitigate this,
we explored potential solutions in subsequent works. In RapidEarth, users are as-
sisted in setting up initial query sets using a map interface, enabling faster naviga-
tion through the data. CLIP-Branches employs a hybrid search engine, combining
traditional NN-based search with our search-by-classification framework. The tra-
ditional NN search identifies a preliminary set of potential candidates that match a
text query, which is then refined by our search-by-classification framework. This hy-
brid structure, where our search-by-classification framework acts as a refinement op-
tion, exemplifies a novel application scenario, particularly advantageous where high
precision and recall of results are crucial.
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Storage Overhead: The pre-built index structures in our search framework result
in some storage overhead. To mitigate this, the storage size of the embeddings
extracted from the raw data can be reduced through fine-tuning and quantization.
This significantly reduces the storage requirements of the entire search platform,
enabling deployment on commodity hardware even for large-scale settings. However,
the extra overhead of the index structures has not been entirely eliminated. Further
research could explore ways to reduce the storage overhead of the index structures.
One approach would be to build smaller sets of index structures while maintaining
similar retrieval accuracy. Another approach could involve integrating compression
techniques into the index structures to avoid storing the entire embeddings of the
points.

Static Datasets: Our framework is currently optimized for static data settings,
where modifications in the underlying dataset are not efficiently supported. The k -
d-b tree used is not optimized for dynamic scenarios. However, our search platform’s
modular architecture allows for replacing the utilized index structures with any other
existing method that supports orthogonal range queries. One such method is the
bkd-tree, which extends the regular k -d-b tree by enabling more efficient processing
of database updates.

Outlook

Widening the scope, there is potential to generalize the co-design approach be-
tween machine learning models and index structures to further enhance search-by-
classification systems. Our research has already demonstrated the synergy between
tree-based models and index structures. Future developments could explore the inte-
gration of various indexing techniques into the construction of classification models.
For instance, an index-aware classifier constrained by the cells produced by product
quantization could benefit from the large storage savings due to the compact codes
used to store elements instead of full embedding vectors. As a potential machine
learning model, we have already demonstrated with HyperNN that neural networks
with their adaptable architecture and customizable parameters are promising can-
didates for embodying these future machine learning models.

The contributions of this thesis provide several insights at the intersection of ma-
chine learning and information retrieval, rethinking the idea of efficient application
of machine learning models. By employing a co-design approach that integrates ma-
chine learning models with index structures, this work not only enhances the effi-
ciency of data retrieval systems but also opens up promising new research directions.
Given their high practical relevance, the proposed methods have the potential for
implementation in real-world applications in the future.
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Appendix A

Efficient
Search-by-Classification

A.1 Fast Search-by-Classification for Large-Scale
Databases Using Index-Aware Decision Trees
and Random Forests

Christian Lülf, Denis Mayr Lima Martins, Marcos Antonio Vaz Salles, Yongluan
Zhou, and Fabian Gieseke. Fast search-by-classification for large-scale databases
using index-aware decision trees and random forests. In Proceedings of the VLDB
Endowment, pages 2845–2857, 2023.

Abstract: The vast amounts of data collected in various domains pose great chal-
lenges to modern data exploration and analysis. To find “interesting” objects in
large databases, users typically define a query using positive and negative example
objects and train a classification model to identify the objects of interest in the en-
tire data catalog. However, this approach requires a scan of all the data to apply the
classification model to each instance in the data catalog, making this method pro-
hibitively expensive to be employed in large-scale databases serving many users and
queries interactively. In this work, we propose a novel framework for such search-
by-classification scenarios that allows users to interactively search for target objects
by specifying queries through a small set of positive and negative examples. Un-
like previous approaches, our framework can rapidly answer such queries at low cost
without scanning the entire database. Our framework is based on an index-aware
construction scheme for decision trees and random forests that transforms the infer-
ence phase of these classification models into a set of range queries, which in turn
can be efficiently executed by leveraging multidimensional indexing structures. Our
experiments show that queries over large data catalogs with hundreds of millions of
objects can be processed in a few seconds using a single server, compared to hours
needed by classical scanning-based approaches.
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A.2 End-to-End Neural Network Training for
Hyperbox-Based Classification

Denis Mayr Lima Martins, Christian Lülf, and Fabian Gieseke. End-to-end neural
network training for hyperbox-based classification. In 31st European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning,
ESANN, 2023.

Abstract: Hyperbox-based classification has been seen as a promising technique
in which decisions on the data are represented as a series of orthogonal, multidi-
mensional boxes (i.e., hyperboxes) that are often interpretable and human-readable.
However, existing methods are no longer capable of efficiently handling the increas-
ing volume of data many application domains face nowadays. We address this gap
by proposing a novel, fully differentiable framework for hyperbox-based classifica-
tion via neural networks. In contrast to previous work, our hyperbox models can
be efficiently trained in an end-to-end fashion, which leads to significantly reduced
training times and superior classification results.
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A.3 Training Neural Networks End-to-End for
Hyperbox-Based Classification

Denis Mayr Lima Martins, Christian Lülf, and Fabian Gieseke. Training neural
networks end-to-end for hyperbox-based classification. In: Neurocomputing. 2024.
Under Review.

Abstract: Modern decision-making requires the use of powerful algorithms to make
sense of a variety of data. In this context, hyperbox induction has been seen as a
promising technique in which decisions on the data are represented as a series of
orthogonal, multidimensional boxes (i.e., hyperboxes) that are often interpretable
and human-readable. However, existing hyperbox induction methods are no longer
capable of efficiently handling the increasing volumes of data many application do-
mains are confronted with. Moreover, current methods offer little to no control on
specific properties of the induced box models, such as the number or the sizes of
the hyperboxes. In this work, we propose a novel, fully differentiable framework for
hyperbox induction that makes use of recent advancements in neural networks. In
contrast to existing approaches, our hyperbox-based models can be trained in an
end-to-end fashion, which leads to significantly reduced training times and superior
classification results.
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Appendix B

Applications

B.1 RapidEarth: A Search-by-Classification Engine
for Large-Scale Geospatial Imagery

Christian Lülf, Denis Mayr Lima Martins, Marcos Antonio Vaz Salles, Yongluan
Zhou, and Fabian Gieseke. RapidEarth: A search-by-classification engine for large-
scale geospatial imagery. In: Proceedings of the 31st ACM International Conference
on Advances in Geographic Information Systems, 2023. This work was awarded with
the Best Demo Award.

Abstract: Data exploration and analysis in various domains often necessitate the
search for specific objects in massive databases. A common search strategy, often
known as search-by-classification, resorts to training machine learning models on
small sets of positive and negative samples and to performing inference on the entire
database to discover additional objects of interest. While such an approach often
yields very good results in terms of classification performance, the entire database
usually needs to be scanned, a process that can easily take several hours even for
medium-sized data catalogs. In this work, we present RapidEarth, a geospatial
search-by-classification engine that allows analysts to rapidly search for interesting
objects in very large data collections of satellite imagery in a matter of seconds,
without the need to scan the entire data catalog. RapidEarth embodies a co-design
of multidimensional indexing structures and decision branches, a recently proposed
variant of classical decision trees. These decision branches allow RapidEarth to
transform the inference phase into a set of range queries, which can be efficiently
processed by leveraging the aforementioned multidimensional indexing structures.
The main contribution of this work is a geospatial search engine that implements
these technical findings.
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B.2 CLIP-Branches: Interactive Fine-Tuning for
Text-Image Retrieval

Christian Lülf, Denis Mayr Lima Martins, Marcos Antonio Vaz Salles, Yongluan
Zhou, and Fabian Gieseke. CLIP-Branches: Interactive fine-tuning for text-image
retrieval. In: Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2024. Accepted (In press).

Abstract: The advent of text-image models, most notably CLIP, has significantly
transformed the landscape of information retrieval. These models enable the fusion
of various modalities, such as text and images. One significant outcome of CLIP
is its capability to allow users to search for images using text as a query, as well
as vice versa. This is achieved via a joint embedding of images and text data
that can, for instance, be used to search for similar items. Despite efficient query
processing techniques such as approximate nearest neighbor search, the results may
lack precision and completeness. We introduce CLIP-Branches, a novel text-image
search engine built upon the CLIP architecture. Our approach enhances traditional
text-image search engines by incorporating an interactive fine-tuning phase, which
allows the user to further concretize the search query by iteratively defining positive
and negative examples. Our framework involves training a classification model given
the additional user feedback and essentially outputs all positively classified instances
of the entire data catalog. By building upon recent techniques, this inference phase,
however, is not implemented by scanning the entire data catalog, but by employing
efficient index structures pre-built for the data. Our results show that the fine-tuned
results can improve the initial search outputs in terms of relevance and accuracy
while maintaining swift response times.
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